Какие это поезда – летающие

Позвольте, а ведь такой поезд мог бы служить отличным накопителем энергии глобального масштаба! Ведь каждый килограмм массы, движущейся со скоростью 8 км/с накапливает энергию в 32 МДж, или почти 10 кВт·ч. Это неслыханно большая удельная энергоемкость накопителя. А при массе поезда, например 106 кг, что является средним показателем, он накопит почти 10 млн кВт·ч энергии. Накопленная энергия такого порядка могла бы существенно улучшить энергосистему не только крупной страны, но и целого мира. В одной части земли – день, в другой – ночь. Накопленная энергия могла бы подаваться в ту часть мира, где она нужнее всего. Если ориентироваться на солнечную энергию, то избыток ее в той части мира, где светло, тоже надо бы накопить в расчете на пасмурную погоду или ночь. В развитых странах мира стоимость электроэнергии ночью гораздо меньше, чем днем, а накопитель мог бы эту стоимость сбалансировать.

Одна беда – пришел поезд на конечный пункт, и хочешь не хочешь – выделяй всю накопленную энергию для остановки! Но этого можно не делать, если замкнуть такую скоростную дорогу в кольцо. Расчеты показывают, что для этого совсем не обязательно тянуть дорогу через весь земной шар, хотя это было бы лучше всего. Автор подсчитал, что вполне хватило бы, по крайней мере для нужд всей страны, кольцевой дороги размером с Московскую кольцевую автодорогу (длиной 100 км). При этом и сам поезд должен быть замкнут в кольцо, а размеры «вагонов» по сечению могут быть всего 1×1 м. Естественно, труба, где будут «летать» такие энергонакопляющие поезда, как и в системе «Планетран», – вакуумная, а подвеска – магнитная. Автор оформил проект такого «сверхнакопителя» как российское изобретение, может быть, когда-нибудь в будущем пригодится. Опять же русские будут и здесь первыми.

А если не говорить о глобальных проектах, то магнитная подвеска может уже сегодня помочь в качестве опор-подшипников крупных маховиков (опять же накопителей!), турбин и аналогичных тяжелых вращающихся деталей. Чем же плохи здесь обычные подшипники? Да тем, что, во-первых, они требуют смазки и ухода, что в вакууме, например, затруднительно. Во-вторых, долговечность их оставляет желать лучшего. А в-третьих, – потери энергии на вращение, которые, кстати, идут на разрушение этих же подшипников.

Магнитная подвеска, основанная на обыкновенных постоянных магнитах, с центровкой на миниатюрных, почти не нагруженных подшипниках (чтобы не потерять устойчивость по Ирншоу!), способна обеспечить следующие «рекордные» показатели:

– долговечность – десятки лет почти без обслуживания;

– малые потери энергии на вращение;

– высокие частоты вращения, недоступные обычным подшипникам.

Схема такой магнитной подвески представлена на рис. 349. Для того чтобы минимизировать потери и массу магнитов, они сгруппированы вокруг центра в столбик или батарею. Применен также ряд хитростей, составляющих изобретение, а именно использованы в качестве активных элементов корпусные детали подвески, которые ранее были просто балластом. Кроме того, достигнута оптимальная – пологая – зависимость подъемной силы от вертикальных перемещений. То есть, если подъемная сила подвески равна 15 кН, то она не изменится при изменении зазора между магнитами – от погрешности сборки или теплового расширения.

Перейти на страницу: 1 2 3 4 5

Copyright © 2010 - All Rights Reserved - www.physicinweb.ru