Некоторые более отдаленные перспективы

И, наконец, пятый возможный способ связать теорию струн с экспериментальными данными включает космологическую постоянную. Мы обсуждали ее в главе 3: она представляет собой дополнительный член, который был временно добавлен Эйнштейном к его первоначальным уравнениям обшей теории относительности, чтобы обеспечить стационарность Вселенной. Хотя в дальнейшем открытие расширения Вселенной побудило Эйнштейна вернуть уравнениям их первоначальный вид, за прошедшее с тех пор время физики осознали, что не существует объяснения, почему космологическая постоянная должна быть равна нулю. В действительности, космологическая постоянная может интерпретироваться как суммарная энергия, содержащаяся в пустоте космического пространства, поэтому ее значение может быть рассчитано теоретически и измерено экспериментально. Однако расчеты и измерения, выполненные до сегодняшнего дня, демонстрируют колоссальное расхождение. Наблюдения показывают, что космологическая постоянная либо равна нулю (как, в конечном счете, полагал Эйнштейн), либо очень мала. Расчеты указывают, что квантовые флуктуации в вакууме дают ненулевое значение космологической постоянной, которое на 120 порядков (единица со 120 нулями) больше, чем значение, допускаемое экспериментальными данными! Это бросает вызов теоретикам и дает им замечательную возможность подтвердить свою правоту. Смогут ли они, используя методы своей теории, устранить это расхождение и объяснить, почему космологическая постоянная равна нулю? Или, если экспериментальные данные, в конечном счете, покажут, что космологическая постоянная имеет небольшое, но ненулевое значение, сможет ли теория струн объяснить этот факт? Если ученые, работающие над теорией струн, смогут ответить на этот вызов (что они пока не сделали), это даст убедительные свидетельства в поддержку данной теории.

Перейти на страницу: 1 2 

Copyright © 2010 - All Rights Reserved - www.physicinweb.ru