Доводы в пользу суперсимметрии — до появления теории струн

Во-первых, с чисто эстетических позиций, физики не могли примириться с тем, что природа реализовала почти все, но не все математически возможные виды симметрии. Конечно, нельзя исключать возможность того, что симметрия реализуется не полностью, но это было бы так обидно. Это было бы похоже на то, как если бы Бах, написав многоголосные переплетающиеся партии, встроенные в гениальную картину музыкальной симметрии, забыл про финал, расставляющий все по своим местам.

Во-вторых, даже в стандартной модели, в теории, которая игнорирует гравитацию, многочисленные технические трудности, связанные с квантовыми эффектами, безболезненно разрешаются при использовании суперсимметрии. Основная проблема состоит в том, что каждый отдельный вид частиц вносит свой собственный вклад в микроскопический квантовый хаос. Исследуя глубины этого хаоса, физики обнаружили, что некоторые процессы, связанные со взаимодействием частиц, можно описать непротиворечивым образом только при очень точной настройке параметров стандартной модели, с точностью, превышающей 10-15, для нейтрализации наиболее разрушительных квантовых эффектов. Для сравнения: такая точность необходима для того, чтобы пуля, выпущенная из воображаемого сверхмощного ружья, попала в цель на Луне с отклонением, не превышающим размеры амебы. Хотя стандартная модель допускает регулировку параметров с такой точностью, многие физики испытывают сильное недоверие к теории, которая устроена настолько деликатно, что разваливается, если параметр, от которого она зависит, изменяется на единицу в пятнадцатом разряде после запятой5'.

Суперсимметрия радикальным образом изменяет эту ситуацию, поскольку бозоны — частицы, имеющие целочисленный спин (получившие свое название в честь индийского физика Сатьендры Бозе), и фермионы — частицы, спин которых равен половине целого (нечетного) числа (названные в честь итальянского физика Энрико Ферми), имеют тенденцию вносить такие вклады в квантовый хаос, которые взаимно сокращаются. Вклады как будто находятся на противоположных концах коромысла: когда вклад бозонов в квантовые флуктуации положителен, вклад фермионов отрицателен, и наоборот. Поскольку суперсимметрия гарантирует, что бозоны и ферм ионы существуют парами, происходит изначальное сокращение, которое существенно уменьшает самые интенсивные квантовые флуктуации. В результате непротиворечивость суперсимметричной стандартной модели, в которую включены все частицы-суперпартнеры, перестает зависеть от подозрительно тонкой регулировки значений параметров обычной стандартной модели. Хотя этот момент кажется сугубо техническим, он делает суперсимметрию очень привлекательной в глазах многих специалистов по физике элементарных частиц.

Третье косвенное доказательство в пользу суперсимметрии связано с понятием великого объединения. Одно из самых загадочных свойств четырех фундаментальных взаимодействий природы состоит в огромных различиях интенсивности этих взаимодействий. Интенсивность электромагнитных сил не превышает одного процента от интенсивности сильного взаимодействия. Слабое взаимодействие примерно в тысячу раз слабее электромагнитного, а интенсивность гравитационных сил слабее еще в несколько сотен миллионов миллиардов миллиардов миллиардов (10-35) раз. Следуя удостоенной Нобелевской премии пионерской работе Глэшоу, Салама и Вайнберга, установившей глубокую связь между электромагнитным и слабым взаимодействием (см. главу 5), Глэшоу и его коллега по Гарвардскому университету Говард Джорджи предположили, что подобную связь можно протянуть и к сильному взаимодействию. Их работа, предлагавшая «великое объединение» трех из четырех взаимодействий, имела одно существенное отличие от электрослабой теории. Электромагнитное и слабое взаимодействия выкристаллизовались из более симметричного состояния, когда температура Вселенной упала примерно до миллиона миллиардов градусов выше абсолютного нуля (1015 К). Джорджи и Глэшоу показали, что объединение с сильным взаимодействием становится очевидным только при температуре, которая еще в десять триллионов раз выше, примерно при десяти миллиардах миллиардов миллиардов миллиардов градусов выше абсолютного нуля (при 1028 К). С точки зрения энергии это примерно в миллион миллиардов раз больше массы протона, или примерно на четыре порядка меньше планковской массы. Джорджи и Глэшоу дерзко направили теоретическую физику в область энергий, на много порядков превышающих те, с которыми исследователи отваживались иметь дело раньше.

Перейти на страницу: 1 2 3 4

Copyright © 2010 - All Rights Reserved - www.physicinweb.ru