Как подделать золото

Махинации с золотом известны с глубокой древности. Об этом свидетельствует хотя бы история с короной сиракузского царя Гиерона.

Еще за 250 лет до Рождества Христова царь Гиерон поручил ювелиру изготовить ему

Еще за 250 лет до Рождества Христова царь Гиерон поручил ювелиру изготовить ему золотую корону, передав при этом мастеру соответствующее количество золота. Корона была изготовлена, но, усомнившись в честности мастера, царь, согласно легенде, поручил своему другу и родственнику Архимеду проверить честность ювелира. Хотя корона весила столько, сколько было отпущено на нее золота, царь заподозрил, что она изготовлена из сплава золота с другими, более дешевыми, металлами. Архимеду было поручено узнать, не ломая короны, есть в ней примесь или нет. Точно неизвестно, каким методом пользовался Архимед, но логично предположить следующее. Сначала он нашел, что кусок чистого золота в 19,3 раза тяжелее такого же объема воды. Иначе говоря, плотность золота в 19,3 раза больше плотности воды. Но надо было найти плотность вещества короны. Если эта плотность оказалась бы больше плотности воды не в 19,3 раза, а в меньшее число раз, значит, корона была изготовлена не из чистого золота.

Взвесить корону было легко, но как найти ее объем? Ведь корона была очень сложной формы. Долго мучился Архимед над этой задачей. И вот однажды, когда он, находясь в бане, погрузился в наполненную водой бадью, его внезапно осенила мысль, давшая решение задачи. Ликующий и возбужденный своим открытием, Архимед выскочил из бадьи и, как был нагой, побежал по улицам с криком: «Эврика! Эврика!», что значит «Нашел! Нашел!»

Архимед взвесил корону сначала в воздухе, затем в воде. По разнице в весе он

Архимед взвесил корону сначала в воздухе, затем в воде. По разнице в весе он определил выталкивающую силу, равную весу воды в объеме короны. Определив затем объем короны, он смог уже определить ее плотность, а зная плотность, ответить на вопрос царя: нет ли примесей дешевых металлов в золотой короне?

Легенда говорит, что плотность вещества короны оказалась меньше плотности чистого золота. Тем самым мастер был изобличен в обмане, а наука обогатилась замечательным открытием.

Историки рассказывают, что задача с золотой короной Гиерона побудила Архимеда заняться вопросом о плавании тел. Результатом этого было появление замечательного сочинения «О плавающих телах», которое дошло до нас. Закон плавания тел сформулирован Архимедом следующим образом:

«Тела, которые тяжелее жидкости, будучи опущены в нее, погружаются все глубже, пока не достигают дна, и, пребывая в жидкости, теряют в своем весе столько, сколько весит жидкость, взятая в объеме тела».

Надо сказать, что в любом газе (например, воздухе) также действует закон Архимеда. Здесь становится актуальным шуточный вопрос: что тяжелее – 1 т железа или 1 т дерева? Не подумав, отвечают обычно, что 1 т железа тяжелее; подумав, говорят, что 1 т – она и есть 1 т и вес 1 т железа, дерева, и чего бы то ни было, одинаков.

Но Я. И. Перельман утверждает, что тяжелее будет 1 т дерева. Вот как он это доказывает:

«Дело в том, что закон Архимеда применим не только к жидкостям, но и к газам. Каждое тело в воздухе „теряет“ из своего веса столько, сколько весит вытесненный телом объем воздуха.

Дерево и железо тоже, конечно, теряют в воздухе часть своего веса. Чтобы получить их истинные веса, нужно «потерю» прибавить. Следовательно, истинный вес дерева в нашем случае равен 1 т + вес воздуха в объеме дерева; истинный вес железа равен 1 т + вес воздуха в объеме железа.

Но 1 т дерева занимает гораздо больший объем, нежели 1 т железа (раз в 15), поэтому истинный вес 1 т дерева больше истинного веса 1 т железа! Выражаясь точнее, мы должны были бы сказать: истинный вес того дерева, которое в воздухе весит 1 т, больше истинного веса того железа, которое весит в воздухе также 1 т.

Так как 1 т железа занимает объем в 1/8 м3, а 1 т дерева – 2 м3, то разность в весе вытесняемого ими воздуха должна составлять около 2,5 кг. Вот насколько 1 т дерева в действительности тяжелее 1 т железа!»

Автор не согласен с такой трактовкой этого шуточного вопроса и считает, что 1 т железа весит больше 1 т дерева.

1 т, или 1 000 кг, – это мера не силы, а массы вещества. При этом безразлично, где оно находится – в воде, в воздухе или вакууме. Если мы взвешиваем это вещество в вакууме, то получаем, что сила тяжести, равная весу Р, есть произведение массы m на ускорение силы тяжести g:

Перейти на страницу: 1 2

Copyright © 2010 - All Rights Reserved - www.physicinweb.ru