Квантовая теория поля
На протяжении 1930-х и 1940-х гг. физики-теоретики во главе с такими личностями, как Поль Дирак, Вольфганг Паули, Юлиан Швингер, Фриман Дайсон, Син-Итиро Томонага и Фейнман, не покладая рук пытались разработать математический аппарат, который помог бы справиться с буйством микромира. Они установили, что квантовое волновое уравнение Шредингера (упомянутое в главе 4) на самом деле дает только приближенное описание физики микромира. Это приближенное описание работает очень хорошо, пока вы не пытаетесь (экспериментально или теоретически) слишком глубоко залезть в микроскопический хаос, но определенно отказывается работать, если кто-то делает такую попытку.
Основным разделом физики, которым Шредингер пренебрег в своей формулировке квантовой механики, была специальная теория относительности. На самом деле Шредингер сначала сделал попытку включить специальную теорию относительности, но полученное в результате квантовое уравнение давало предсказания, находившиеся в противоречии с экспериментальными данными для атома водорода. Это побудило Шредингера воспользоваться широко применяемым в физике подходом «разделяй и властвуй»: вместо того, чтобы пытаться одним махом объединить в новой теории все, что известно о физическом мире, часто гораздо выгоднее бывает делать небольшие шаги, которые последовательно включают новейшие открытия, сделанные на переднем крае исследований. Шредингер искал и нашел математический аппарат, который позволил учесть экспериментально подтвержденный корпускулярно-волновой дуализм, но он не смог на этой стадии включить в рассмотрение специальную теорию относительности4).
Однако вскоре физики осознали, что специальная теория относительности крайне важна для корректной формулировки законов квантовой механики. Хаос микромира требует признания, что энергия может проявлять себя самыми различными способами. Впервые это было осознано в формуле специальной теории относительности Е = тс2. Игнорируя специальную теорию относительности, подход Шредингера не учитывал взаимопревращаемость материи, энергии и движения.
Прежде всего физики сконцентрировали свои усилия на попытках объединить специальную теорию относительности с принципами квантовой механики при описании электромагнитного поля и его взаимодействия с веществом. В результате серии вдохновляющих достижений они создали квантовую электродинамику. Это был пример теории, впоследствии получившей название релятивистской квантовой теории поля или, кратко, квантовой теории поля. Такая теория является квантовой, поскольку она с самого начала строилась с использованием понятий вероятности и неопределенности; она является теорией поля, поскольку объединяет понятия квантовой механики и ранее существовавшее классическое представление о силовом поле, и данном случае, максвелловском электромагнитном поле. Наконец, эта теория является релятивистской, поскольку с самого начала учитывает специальную теорию относительности. (Если вам нужен визуальный образ квантового поля, вы можете использовать образ классического поля, скажем, океан невидимых силовых линий, пронизывающих пространство, дополнив его в двух отношениях. Во-первых, вы должны представить квантовое поле образованным из частиц-составляющих, таких как фотоны в случае электромагнитного поля. Во-вторых, вы должны представить, что энергия, сосредоточенная в массах частиц и их движении, бесконечно много раз переходит от одного квантового поля к другому в процессе их непрерывных осцилляции в пространстве и времени.)
Квантовая электродинамика, бесспорно, является наиболее точной из когда-либо созданных теорий, описывающих природные явления. Иллюстрацию ее точности можно найти в работах Тойхиро Киношиты, специалиста по физике элементарных частиц из Корнелльского университета, который в течение последних 30 лет неутомимо использовал квантовую электродинамику для расчета некоторых тонких свойств электронов. Расчеты Киношиты заполняют тысячи страниц, и в конце концов потребовали для завершения самых мощных из когда-либо созданных компьютеров. Но затраченные им усилия принесли свои плоды, позволив рассчитать характеристики электронов, которые подтвердились экспериментально с точностью, превышающей одну миллиардную. Это согласие между результатами абстрактных теоретических вычислений и данными реального мира совершенно поразительно. С помощью квантовой электродинамики физики смогли подтвердить роль фотонов как «наименьших возможных сгустков света» и описать их взаимодействие с электрически заряженными частицами в рамках математически законченной модели, позволяющей получать убедительные предсказания.