Теория относительности

Первое определение слова „одновременно“ кажется несколько более соответствующим обычному употреблению этого слова в повседневной жизни, так как вопрос о том, одновременны ли два процесса, в повседневной жизни определенно не зависит от системы отсчета. В обоих же релятивистских определениях понятие одновременности приобрело ту точность, которая совершенно отсутствовала у него в языке повседневной жизни. В квантовой теории физики должны были уже заранее осознать, что понятия классической механики описывают природу недостаточно точно, что квантовые законы ограничивают их применимость и что поэтому при их использовании необходима большая осторожность. В теории относительности физики, напротив, пытались изменить смысл слов классической физики, уточнив эти понятия таким образом, чтобы они точно соответствовали новой, только что познанной ситуации в природе.

Структура пространства и времени, выявленная теорией относительности, находит много проявлений в самых различных разделах физики. Электродинамика движущихся тел может быть без труда выведена из принципа относительности. Сам этот принцип может быть сформулирован как весьма общий закон природы, относящийся не только к электродинамике или механике, но и к любой группе законов природы: законы должны принимать одну и ту же форму во всех системах отсчета, отличающихся друг от друга лишь состоянием равномерного и прямолинейного движения. Они инвариантны, как можно сказать на языке математики, относительно преобразований Лоренца.

По-видимому, наиболее важным следствием принципа относительности является установление свойства инерции энергии, или эквивалентности массы и энергии. Так как скорость света играет роль предельной скорости, которая никогда не может быть достигнута никаким материальным телом, то можно легко понять, что движущееся тело должно приобретать ускорение с большим трудом, чем еще покоящееся тело. Инерция, стало быть, увеличивается с возрастанием кинетической энергии. Говоря обобщенно, каждый вид энергии несет в себе определенную инерцию, то есть массу, и масса, соответствующая данной энергии, равна этой энергии, деленной на квадрат скорости света. Всякая энергия несет, стало быть, с собой массу, но даже очень большие — по обычным понятиям — количества энергии дают все-таки лишь очень небольшое увеличение массы, и это является причиной того, что связь массы и энергии ранее не была обнаружена. Два закона — закон сохранения массы и сохранения энергии — потеряли свою независимую друг от друга справедливость и оказались объединенными в единый закон, который можно назвать законом сохранения энергии или массы.

50 лет назад, когда была создана теория относительности, эта гипотеза об эквивалентности массы и энергии революционизировала физику, но экспериментальных доказательств этого закона было тогда очень мало. В наши дни можно во многих экспериментах непосредственно видеть, как элементарные частицы рождаются из кинетической энергии и как такие частицы могут снова исчезнуть, превратившись в излучение. Поэтому ныне превращение энергии в массу и наоборот не представляет собой ничего необыкновенного.

Огромные количества энергии, которые освобождаются при атомных взрывах, представляют собой другое и гораздо более очевидное доказательство справедливости соотношения Эйнштейна. Но, вероятно, здесь следует сделать критическое замечание исторического порядка. Иногда утверждают, что огромные количества энергии возникают при атомных взрывах непосредственно вследствие превращения массы в энергию и что эти гигантские количества энергии могли быть предсказаны только на основе теории относительности. Это мнение основано, однако, на недоразумении. Большие количества энергии, запасенные в недрах атомных ядер, были известны со времени экспериментов Беккереля, Кюри и Резерфорда по радиоактивному распаду. Любое радиоактивное вещество, например радий, выделяет количество тепла, которое может быть высвобождено из такого же количества вещества в химической реакции. Энергия распада ядра урана имеет то же происхождение, что и энергия альфа-распада ядра радия, а именно в основном электростатическое отталкивание двух обломков, на которые атомное ядро распалось. Энергия, высвобождающаяся при атомном взрыве, выделяется, стало быть, непосредственно из этого источника, а не возникает благодаря превращению массы в энергию. Ибо число элементарных частиц с конечной массой покоя во время атомного взрыва совершенно не уменьшается. Правда, энергия связи „строительных кирпичей“ атомного ядра проявляет себя также в массах покоя ядер, и поэтому высвобождение энергии косвенно связано и с изменением масс атомных ядер.

Перейти на страницу: 1 2 3 4 5 6 7 8 9

Copyright © 2010 - All Rights Reserved - www.physicinweb.ru