Теория относительности

Теория относительности всегда играла в современной физике особо важную роль. В ней впервые была показана необходимость периодического изменения основополагающих принципов физики. Поэтому обсуждение тех проблем, которые были подняты и отчасти решены теорией относительности, существенно необходимо для рассмотрения философских аспектов современной физики. В известном смысле можно сказать, что создание теории относительности — в противоположность квантовой теории — потребовало сравнительно немного времени с момента окончательного осознания трудностей, о которых в данном случае шла речь, до их разрешения. Повторение опыта Майкельсона Морлеем и Миллером в 1904 году явилось первым надежным доказательством невозможности обнаружить поступательное движение Земли с помощью оптических методов, а решающая работа Эйнштейна появилась менее чем два года спустя. С другой стороны, опыт Морлея и Миллера и работа Эйнштейна явились все-таки, пожалуй, лишь последними фазами развития, которое началось гораздо ранее и которое, по-видимому, можно связать с проблемой „электродинамики движущихся сред“.

Электродинамика движущихся сред оказалась важным разделом физики и техники с того времени, как начали строить электромоторы. Серьезная трудность выявилась в этой области только тогда, когда Максвелл вскрыл электромагнитную природу световых волн. Эти волны одним существенным свойством отличаются от других, уже известных ранее волн, например от звуковых волн. Они могут распространяться в пустом пространстве. Если звонок заставить звучать в сосуде, из которого откачан воздух, то звук не достигает пространства вне сосуда. Свет же свободно проходит сквозь безвоздушное пространство. Поэтому предположили, что световые волны можно рассматривать как упругие волны в очень легкой субстанции, называемой эфиром, которую нельзя ни видеть, ни ощущать, но которая заполняет как безвоздушное пространство, так и пространство, занятое другим веществом, например воздухом или стеклом. Мысль о том, что электромагнитные волны обладают своей собственной реальностью, независимой ни от каких тел, в то время еще не приходила физикам в голову. Так как это гипотетическое вещество — эфир — могло проникать во все другие тела, то встал вопрос: что происходит, если тело приведено в движение? Принимает ли эфир участие в этом движении, и если да, то как распространяется световая волна в этом движущемся эфире?

Эксперименты, которые дают ответ на этот вопрос, трудны по следующей причине: скорости движущихся тел обычно чрезвычайно малы по сравнению со скоростью света. Поэтому движение этих тел может вызвать только очень незначительные эффекты, приблизительно пропорциональные отношению скорости тела к скорости света или более высокой степени этого отношения. Разнообразные эксперименты Вильсона, Роуланда, Рентгена, Эйхенвальда и Физо позволили измерить такие эффекты с точностью, соответствующей первой степени этого отношения. Электронная теория, развитая Лоренцом в 1895 году, дала удовлетворительное описание этих эффектов „первого порядка“. Но эксперимент Майкельсона, Морлея и Миллера создал новую ситуацию.

Этот эксперимент следует обсудить подробно. Чтобы получить большие эффекты, а тем самым и более точные результаты, казалось целесообразным экспериментировать с телами, двужущимися очень быстро. Земля движется вокруг Солнца со скоростью около 30 км/сек. Если эфир покоится относительно Солнца и не увлекается Землей, то это быстрое движение эфира относительно Земли с необходимостью должно проявляться в изменении скорости распространения света на Земле. Тогда должны получаться различные значения скорости света, смотря по тому, как распространяется свет — в направлении движения Земли или перпендикулярно к этому направлению. Даже если эфир увлекается Землей частично, должен еще получаться некоторый эффект, так как имел бы место, так сказать, эфирный ветер, и этот эффект должен тогда зависеть, вероятно, от высоты над уровнем моря, на которой проводится эксперимент. Вычисление эффекта, который следует ожидать, показывает, что он в данном случае должен быть очень малым, так как оказывается пропорциональным квадрату отношения скорости Земли к скорости света. Поэтому необходимо поставить точные эксперименты по интерференции двух световых пучков, один из которых направлен параллельно, а другой перпендикулярно к направлению движения Земли. Первый эксперимент такого рода, выполненный Майкельсоном в 1881 году, был недостаточно точен. Но и последующие повторные эксперименты не обнаружили ни малейших следов ожидаемого эффекта. Такого рода окончательным доказательством того, что эффект ожидаемого порядка величины не имеет места, являются в особенности эксперименты Морлея и Миллера 1904 года.

Перейти на страницу: 1 2 3 4 5 6

Copyright © 2010 - All Rights Reserved - www.physicinweb.ru