Блюзы ХХ века

Однако подобная симметрия определенно отсутствует в окружающей нас природе, и поэтому-то ее так долго не могли открыть. Например, электроны и частицы W , Z обладают массами, а нейтрино и фотоны не имеют массы. (Слабые силы во много раз слабее электромагнитных именно благодаря большой массе W , Z .) Иными словами, симметрия, связывающая электроны, нейтрино и другие частицы, есть свойство основных уравнений стандартной модели, определяющих свойства элементарных частиц, но в то же время, эта симметрия не выполняется для решений этих уравнений, т.е. для свойств самих частиц.

Чтобы понять, как это возможно, чтобы уравнения имели симметрию, а решения – нет, предположим, что наши уравнения полностью симметричны относительно двух типов частиц (например, u -, d -кварков), и мы хотим найти решения этих уравнений, определяющие массы обеих частиц. Можно было бы предположить, что симметрия между двумя типами кварков приведет к тому, что и их массы окажутся одинаковыми, но это не единственная возможность. Симметрия уравнений не исключает возможности того, что решение будет давать массу u -кварка больше, чем масса d -кварка, но при этом обязательно должно существовать второе решение уравнений, дающее массу d -кварка на столько же большую массы u -кварка. Таким образом, симметрия уравнений необязательно должна отражаться в симметрии каждого отдельно взятого решения этих уравнений, а лишь во всей совокупности решений. В этом простом примере реальные свойства кварков будут соответствовать одному или другому решению, демонстрируя нарушение симметрии исходной теории. Заметим, что на самом деле безразлично, какое из двух решений реализуется в природе, если единственной разницей между кварками u и d является разница в их массах, тогда разница между двумя решениями будет соответствовать тому, какой из кварков мы назовем u , а какой d . Природа, как мы ее знаем, соответствует одному решению всех уравнений стандартной модели, при этом безразлично какому , если только все решения связаны точными принципами симметрии.

В подобных случаях говорят, что симметрия нарушена, хотя лучше было бы говорить, что симметрия «спрятана» , так как уравнения продолжают обладать симметрией, и именно уравнения определяют свойства частиц. Описанное явление называется спонтанным нарушением симметрии , так как ничто не нарушает симметрию уравнений теории, а нарушение симметрии возникает спонтанно в различных решениях уравнений.

Красота наших теорий во многом определяется принципами симметрии. Именно поэтому первые работы по спонтанному нарушению симметрии в начале 60-х гг. вызвали столь большой резонанс. Перед нами вдруг открылось, что в законах природы есть значительно больше симметрии, чем это кажется на основе анализа свойств элементарных частиц. Нарушенная симметрия – вполне платоновское понятие: та реальность, которую мы наблюдаем в наших лабораториях есть лишь искаженное отражение более глубокой и более красивой реальности уравнений, отображающих все симметрии теории.

Обычный постоянный магнит является хорошим реалистичным примером нарушенной симметрии. (Этот пример особенно подходит потому, что идея спонтанного нарушения симметрии появилась впервые в квантовой физике в 1928 г., в построенной Гейзенбергом теории постоянного магнетизма.) Уравнения, определяющие поведение атомов железа и магнитное поле в магните, нагретом до очень высокой температуры (скажем, 800 °С), обладают точной симметрией по отношению ко всем направлениям в пространстве: ничто в этих уравнениях не отличает север от юга или восток от запада. Однако если кусок железа охладить ниже 770 °С, он внезапно приобретает определенным образом направленное магнитное поле, нарушая тем самым симметрию между направлениями. Расе крохотных существ, родившихся и проживших всю жизнь внутри постоянного магнита, потребовалось бы много времени на то, чтобы осознать, что истинные законы природы обладают полной симметрией относительно разных направлений в пространстве, и выделенное направление возникает только потому, что спины атомов железа спонтанно выстраиваются в одну сторону, создавая магнитное поле.

Перейти на страницу: 1 2 3 4 5 6 7

Copyright © 2010 - All Rights Reserved - www.physicinweb.ru