Красивые теории

Еще более странным является пример с историей открытия принципов внутренней симметрии. В физике эти принципы обычно отражают нечто вроде семейных связей между отдельными членами в списке возможных элементарных частиц. Первый известный пример такой симметрии связан с двумя типами частиц, из которых состоят обычные атомные ядра, – протоном и нейтроном. Массы протона и нейтрона почти одинаковы, так что, когда нейтрон был открыт Джеймсом Чедвиком в 1932 г., сразу же возникло естественное предположение, что сильные ядерные силы (дающие вклад в массы нейтрона и протона) должны обладать простой симметрией: уравнения, определяющие эти силы, должны сохранять свой вид, если везде в них поменять местами роли протонов и нейтронов. Помимо прочего, из такой гипотезы следует, что сильные ядерные силы, действующие между двумя нейтронами, равны таким же силам, действующим между двумя протонами. Однако ничего нельзя сказать о силе, действующей между протоном и нейтроном. Поэтому несколько неожиданным оказался результат экспериментов, подтвердивших в 1936 г., что ядерные силы, действующие между двумя протонами, равны таким же силам, действующим между протоном и нейтроном Это наблюдение породило идею симметрии, выходящей за рамки простой замены протонов на нейтроны и наоборот. Речь идет о симметрии по отношению к непрерывным преобразованиям, превращающим протоны и нейтроны в частицы, являющиеся суперпозициями протонов и нейтронов, с произвольной вероятностью находиться в протонном или нейтронном состояниях.

Подобные преобразования симметрии действуют на метку частицы, которая отличает протоны от нейтронов, способом, который математически совпадает с тем, как обычные вращения в трехмерном пространстве действуют на спины частиц, вроде протона, нейтрона или электрона. Помня об этом примере, многие физики вплоть до начала 60-х гг. молчаливо предполагали, что по аналогии с вращениями, переводящими протон и нейтрон друг в друга, все преобразования внутренней симметрии, оставляющие неизменными законы природы, должны иметь форму вращений в некотором внутреннем пространстве двух, трех или более измерений. Учебники, в которых излагалось применение принципов симметрии к физике (включая классические книги Германа Вейля и Юджина Вигнера) даже не упоминали о других математических возможностях. Только в конце 50-х гг., после открытия множества новых частиц сначала в космических лучах, а позднее на ускорителях вроде бэватрона в Беркли, в среде физиков-теоретиков возникло более широкое понимание возможностей описания внутренних симметрий. Новые частицы, казалось, объединялись в значительно более обширные семейства, чем простая пара протон-нейтрон. Например, обнаружилось, что протон и нейтрон несут черты фамильного сходства с шестью другими частицами, называемыми гиперонами и имеющими тот же спин и близкие массы. Какой же тип внутренней симметриии может порождать такие обширные родственные группы?

В начале 60-х гг. физики, занимавшиеся этим вопросом, обратились за помощью к литературе по математике. Для них оказалось приятным сюрпризом, что математики уже давно составили в некотором смысле полный каталог всех возможных симметрий. Полный набор преобразований, оставляющих что-то неизменным, будь то конкретный объект или законы природы, образует математическую структуру, называемую группой , а раздел математики, изучающий преобразования симметрии, называется теорией групп . Каждая группа характеризуется абстрактными математическими правилами, не зависящими от того, что подвергается преобразованию, так же как правила арифметики не зависят от названий тех величин, которые мы складываем или умножаем. Список типов семейств, разрешенных каждой конкретной симметрией законов природы, полностью определяется математической структурой группы симметрии.

Перейти на страницу: 8 9 10 11 12 13 14 15 16 17 18

Copyright © 2010 - All Rights Reserved - www.physicinweb.ru