Красивые теории

Итак, математические структуры, развиваемые учеными для реализации физических принципов, обладают странным свойством подвижности. Их можно переносить от одного концептуального окружения к другому, они могут служить разным целям. Так, лопаточные кости в теле человека играют роль соединения между крыльями и телом птицы или ластами и телом дельфина. Физические принципы приводят к красивым структурам, которые остаются жить, даже когда умирают принципы.

Возможное объяснение было предложено Нильсом Бором. Рассуждая в 1922 г. о будущем своей ранней теории строения атомов, он заметил, что «в математике существует ограниченное число форм, которые нам удается использовать для описания природы, и может так случиться, что кто-нибудь обнаружит правильные формы, исходя из совершенно неверных представлений». Бор оказался совершенно прав в отношении будущего собственной теории: принципы, лежащие в ее основе, были отвергнуты, но мы до сих пор используем некоторые элементы ее языка и методы вычислений.

Именно применение чистой математики к физике дает поразительные примеры эффективности эстетических суждений. Уже давно стало общим местом утверждение, что математики руководствуются в своей работе желанием построить такой формализм, принципы которого красивы. Английский математик Г. Харди пояснял, что «математические структуры должны быть так же красивы, как те, которые используют художники или поэты. Идеи, как краски или слова, должны гармонично сочетаться друг с другом. Красота – первый тест. Уродливой математике нет места». И вот оказалось, что благоговейно разрабатывавшиеся математиками структуры, в которых они искали красоту, позднее часто становились необычайно важными для физиков.

Для иллюстрации вернемся к примеру с неевклидовой геометрией и общей теорией относительности. В течение двух тысяч лет после Евклида математики пытались выяснить, являются ли независимыми друг от друга те предположения, которые лежат в основе евклидовой геометрии. Если постулаты не независимы, если какие-то из них могут быть выведены из других, тогда лишние должны быть отброшены, что приведет к более экономной, а следовательно более красивой формулировке геометрии. Попытки разобраться в структуре евклидовой геометрии достигли пика к началу XIX в., когда «король геометров» Карл Фридрих Гаусс и другие ученые разработали неевклидову геометрию, применимую для искривленного пространства определенного типа, в котором выполнены все постулаты Евклида, кроме пятого. Этим было доказано, что пятый постулат Евклида действительно логически независим от остальных. Новая геометрия была построена, чтобы ответить на давний вопрос об основаниях геометрии, а совсем не для того, чтобы применять ее к реальному миру.

Затем один из величайших математиков, Георг Фридрих Бернгард Риман, развил неевклидову геометрию, обобщив ее на общую теорию искривленных пространств в двух, трех или произвольном числе измерений. Не имея никакого представления о возможных физических приложениях, математики продолжали трудиться над развитием римановой геометрии, так как она поражала своей красотой. Эта красота во многом опять была красотой неизбежности. Достаточно начать размышлять над свойствами искривленных пространств, и вы почти неизбежно придете к необходимости введения математических понятий (метрика, аффинная связность, тензор кривизны), являющихся неотъемлемыми частями римановой геометрии. Когда Эйнштейн начал развивать общую теорию относительности, он вскоре понял, что один из способов реализации его идей о симметрии между различными системами отсчета заключается в том, чтобы описать тяготение как кривизну пространства-времени. Эйнштейн поинтересовался у своего друга, математика Марселя Гроссмана, не существует ли какой-нибудь теории искривленных пространств – не просто искривленных двумерных поверхностей в обычном трехмерном евклидовом пространстве, а искривленных трехмерных и даже четырехмерных пространств? Гроссман обрадовал Эйнштейна, сказав, что такой математический формализм существует, он развит Риманом и другими математиками. Более того, Гроссман обучил Эйнштейна этой математике, которая затем вошла составной частью в общую теорию относительности. Таким образом, получается, что математика ждала появления Эйнштейна, который сумел ее использовать для физики, хотя я полагаю, что ни Гаусс, ни Риман, ни другие специалисты по дифференциальной геометрии XIX в. понятия не имели, что их работа когда-нибудь будет иметь хоть какое-то отношение к физической теории тяготения.

Перейти на страницу: 7 8 9 10 11 12 13 14 15 16 17

Copyright © 2010 - All Rights Reserved - www.physicinweb.ru