О кусочке мела

Почему? Почему некоторые вещества сильно поглощают видимый свет определенных длин волн, а другие нет? Оказывается, ответ связан со сравнительными энергиями атомов и света. Ученые начали понимать это после работ Альберта Эйнштейна и Нильса Бора, сделанных в первые два десятилетия ХХ в. Эйнштейн в 1905 г. впервые понял, что световой луч состоит из потока колоссального количества частиц, позднее названных фотонами . У фотонов нет ни массы, ни электрического заряда, но каждый фотон обладает определенной энергией, величина которой обратно пропорциональна длине волны света. В 1913 г. Бор предположил, что атомы и молекулы могут существовать только в определенных состояниях , т.е. стабильных конфигурациях, обладающих определенной энергией. Хотя атомы часто сравнивают с миниатюрными Солнечными системами, все же существует принципиальное различие. Любой планете Солнечной системы можно придать чуть больше или чуть меньше энергии, просто подвинув ее чуть дальше от Солнца или, наоборот, придвинув к нему. Но состояния атома дискретны – мы не можем изменять энергии атомов иначе, как на определенную конечную величину. Обычно атом или молекула находятся в состоянии с наименьшей энергией. Но, поглощая свет, они перескакивают из состояния с наименьшей энергией в одно из состояний с большей энергией (при испускании света происходит обратный процесс). Если объединить идеи Эйнштейна и Бора, то получается, что свет может поглощаться атомом или молекулой, только если длина волны света принимает определенное значение. Эти определенные длины волн отвечают таким энергиям фотонов, которые как раз равны разности энергий между начальным состоянием атома или молекулы и одним из состояний с большей энергией. В противном случае при поглощении фотона атомом или молекулой не сохранялась бы энергия. Типичные соединения меди имеют зелено-синий цвет, потому что существует определенное состояние атома меди, обладающее энергией, на два электрон-вольта большей, чем энергия нормального состояния атома. Поэтому атом особенно легко перепрыгивает в состояние с большей энергией, поглотив фотон с энергией 2 эВ. Длина волны такого фотона равна 0,62 мкм, что соответствует красно-оранжевому цвету, так что после поглощения этого фотона оставшийся отраженный свет имеет зелено-синий оттенок. (Приведенное рассуждение – не просто крайне сложный способ объяснить то, что мы и так знаем про зелено-синий цвет соединений меди; подобная структура энергетических состояний атомов меди проявляется и тогда, когда они получают извне энергию другими способами, например, от пучка электронов.) Мел имеет белый цвет потому что у молекул, из которых он состоит, оказывается, нет таких уровней энергии, куда можно легко перепрыгнуть, поглощая фотоны любого цвета из видимого света.

Почему? Почему атомы и молекулы существуют только в дискретных состояниях, обладающих определенной энергией? Почему эти энергии такие, а не другие? Почему свет состоит из отдельных частиц, энергия которых обратно пропорциональна длине волны света? И почему атомы или молекулы особенно легко перепрыгивают в определенные состояния, поглощая фотоны? Все эти свойства света, атомов и молекул было невозможно понять вплоть до середины 1920-х гг., когда был развит новый подход в физике, известный как квантовая механика. В рамках квантовой механики частицы в атоме или молекуле описываются так называемой волновой функцией. Эта функция ведет себя в чем-то похоже на волну света или звука, но ее значение (точнее, значение ее квадрата) определяет вероятность обнаружения частицы в любом данном месте. Точно так же, как воздух в органной трубе может колебаться только в определенных модах, каждая из которых имеет свою длину волны, так и волновая функция частицы в атоме или молекуле может существовать только в определенных модах или квантовых состояниях, каждое из которых имеет свою определенную энергию. Когда уравнения квантовой механики применили для рассмотрения атома меди, обнаружилось, что один из электронов на далекой внешней орбите этого атома слабо связан и в результате поглощения видимого света может быть легко переброшен на следующую более высокую орбиту. Квантовомеханические вычисления показали, что энергии атома в этих двух состояниях отличаются на два электрон-вольта, что как раз равно энергии фотона красно-оранжевого света. С другой стороны, у молекул карбоната кальция в куске мела нет подобных слабосвязанных электронов, которые могли бы поглотить фотоны какой-нибудь длины волны. Что же касается фотонов, то их свойства объясняются применением принципов квантовой механики к самому свету. Оказывается, что свет, как и атомы, может существовать только в определенных квантовых состояниях с определенной энергией. Например, красно-оранжевый свет длиной волны 0,62 мкм может существовать только в состояниях с энергиями, равными нулю или 2, 4, 6 и т.д. эВ, которые мы интерпретируем как состояния без фотонов или содержащие один, два, три и т.д. фотонов, энергия каждого из которых равна 2 эВ.

Перейти на страницу: 1 2 3 4 5 6 7

Copyright © 2010 - All Rights Reserved - www.physicinweb.ru