Симметрия указывает путь

Значение концепции калибровочной симметрии заключается в том, что благодаря ей создается не только гравитационное, а и все четыре фундаментальных взаимодействия, встречающиеся в природе. Все их можно рассматривать как калибровочные поля. В квантовом описании калибровочные поля связаны с частицами вещества и концепцию калибровочного преобразования следует расширить, связав с фазой квантовой волны, описывающей частицу. Входить в технические детали этой процедуры вряд ли стоит. Существенно другое: в природе существует целый ряд локальных калибровочных симметрий и необходимо соответствующее число полей для компенсации этих калибровочных преобразовании. Силовые поля можно рассматривать как средство, с помощью которого в природе создаются присущие ей локальные калибровочные симметрии. С этой точки зрения, например, электромагнитное поле не просто определенный тип силового поля, существующего в природе, а проявление простейшей из известных калибровочных симметрий, совместимой с принципами специальной теории относительности. Калибровочные преобразования в этом случае соответствуют изменениям потенциала от точки к точке.

Интересно отметить, что физик-теоретик, ничего не знающий об электромагнетизме, но убежденный, что природа зиждется на симметрии, мог бы сделать вывод о существовании электромагнитных явлений, основываясь лишь на требовании простейшей локальной калибровочной симметрии и так называемой симметрии Лоренца—Пуанкаре специальной теории относительности, о которой мы упоминали в гл. 4. Используя математику и основываясь только на существовании этих двух симметрий, теоретик смог бы построить уравнения Максвелла, не проведя ни единого эксперимента по электричеству и магнетизму и даже не подозревая об их существовании. При этом он, возможно, рассуждал бы так1 коль скоро упомянутые симметрии – простейшие и наиболее утонченные, вряд ли природа не воспользовалась бы ими. Исходя из подобных чисто умозрительных соображений, теоретик пришел бы к выводу о существовании в реальном мире электромагнитных явлений. Он мог бы пойти и дальше: вывести все законы электромагнетизма, доказать существование радиоволн, возможность создания динамо-машины и т.д., т.е. совершить все те открытия, которые в действительности были сделаны на основе реальных экспериментов. Могущество математического анализа, используемого для описания явлений природы, столь велико, что позволяет предвидеть такие особенности, о существовании которых мы и не помышляли.

Калибровочная симметрия – гораздо более важное понятие, чем просто изящный математический прием. В ней скрыт ключ к построению квантовых теорий взаимодействий, свободных от разрушительного действия бесконечных членов уравнений, о чем шла речь в предыдущем разделе. Калибровочная симметрия, как оказалось, тесно связана с перенормируемостью. Чудо КЭД основано на глубокой и простой симметрии, присущей электромагнитному полю. Это наводит на мысль о том, что трудности квантового описания трех других взаимодействий, по-видимому, связаны с тем, что нам не удалось обнаружить полный набор скрытых в них симметрий. Например, если бы теорию слабого взаимодействия можно было сформулировать на языке калибровочных полей, то это способствовало бы успешному построению квантового описания этого взаимодействия.

На первый взгляд, однако, кажется, что на пути к осуществлению такой программы возникает серьезное препятствие. Одна из особенностей калибровочных полей состоит в том, что эти поля – дальнодействующие. Возможность проведения калибровочных преобразований в любой точке требует, чтобы компенсирующие поля действовали во всем пространстве. Для гравитации и электромагнетизма, простирающихся в п

Перейти на страницу: 1 2 3 4

Copyright © 2010 - All Rights Reserved - www.physicinweb.ru