История

понимания эффект Допплера в течение нескольких десятилетий встречал ожесточенное сопротивление, несмотря на подтверждение, которое он получил в области акустики (гл. 2). Это сопротивление отчасти объясняется действительно спорными астрономическими применениями этого принципа Допплером. И все же Допплер был по существу прав, и астрономия первая дала экспериментальное подтверждение этого принципа. В 1860 г. Эрнст Мах (1838-1916) предсказал, что линии поглощения в спектрах звезд, связанные с самой звездой, должны обнаруживать эффект Допплера; но наряду с ними в этих спектрах существуют линии поглощения земного происхождения, не обнаруживающие эффекта Допплера. Первое соответствующее наблюдение удалось произвести в 1868 г. Вильяму Хюггинсу (1824-1910). В настоящее время точность таких наблюдений при благоприятных условиях так велика, что можно измерить лучевые скорости в 3 • 104см/сек, в то время как эти скорости могут достигать величины до 107см/сек. Лабораторное доказательство эффекта Допплера было дано в 1905 г. Иоганнесом Штарком, пользовавшимся в качестве источника света каналовыми лучами, т. е. светящимися атомами, которые в электрических газовых разрядах приобретают скорости до 108см/сек; в этих опытах допплеровские смещения спектральных линий получаются гораздо ббльшими, чем в астрономических наблюдениях. В 1919 г. К. Майорана проверил эффект Допплера на источниках света, механически движущихся со скоростью порядка 2 • 104см/сек.

Как ни важны аберрация и эффект Допплера, но они не отвечают на вопрос, существуют ли несколько систем отсчета, равноправных с точки зрения оптики. Как показывает более точное рассмотрение, эти явления вообще не зависят от скоростей источника света и наблюдателя по отношению к системе отсчета, а зависят только, по крайней мере в первом приближении, от относительной скорости источника света и наблюдателя по отношению друг к другу. Если бы наблюдение смогло обнаружить влияние скорости, общей для всех участвующих тел, то было бы доказано существование привилегированной системы отсчета. Но в подобном опыте эта скорость вступает в конкуренцию со скоростью света; результат зависит от их отношения, которое является всегда маленьким числом. Поэтому такие наблюдения трудны уже тогда, когда занимаются эффектом первого порядка, т. е. величинами, пропорциональными этому отношению; тем более они трудны в случае эффекта второго порядка, при котором в рассмотрение входит квадрат этого отношения. Для случая движения Земли вокруг Солнца это отношение равно 10-4. Подобными, экспериментами пытались установить «эфирный ветер» по отношению к движущейся Земле. После 1839 г., когда Жак Бабинэ (1794-1872) исследовал влияние движения Земли на явления интерференции, было много других аналогичных попыток. Но все они давали отрицательные результаты. Большинство опытов касалось эффектов первого порядка и не давало возможности решить вопрос о системе отсчета, пока в 1895 г. Г. А. Лорентц не доказал на основе электронной теории, что вообще не может быть таких электромагнитных и оптических эффектов первого порядка. Тем большее значение получили немногие опыты, в которых исследовались эффекты второго порядка. Между ними теоретически самым простым и экспериментально точным является опыт Майкельсона. Он непосредственно сравнивает относительные скорости света по отношению к Земле в различных направлениях. «Эфирный ветер», если он существует, должен обусловить различия между ними. Эту мысль и первое еще несовершенное опытное выполнение ее А. А. Майкельсон опубликовал в 1881 г. После того как в 1884 г. Г. А. Лорентц отметил недостатки этой работы, Майкельсон и Морли в 1887 г. выступили с повторным опытом, который имел уже

Перейти на страницу: 1 2 3 4

Copyright © 2010 - All Rights Reserved - www.physicinweb.ru