Электричество и магнетизм

Последующие исследователи прибавили к списку сверхпроводников еще несколько чистых металлов, а также ряд сплавов и химических соединений. В. Гааз и его сотрудники заметили, что критическое значение напряженности поля для сверхпроводящей проволоки зависит от направления магнитного поля по отношению к оси проволоки. Объяснение этому явлению дал в 1932 г. М. Лауэ. Если поместить сверхпроводник

в однородное магнитное поле, то он деформирует это поле, потому что силовые линии обходят его, как это показал на основе теории Максвелла Габриэль Липп-ман (1845-1921). Но сжатие силовых линий обусловливает усиление поля в определенных точках поверхности; сверхпроводимость разрушается, как только в какой-либо точке достигается критическое значение поля. Это подтвердили в последующие годы измерения Гааза и его сотрудников на сверхпроводниках различной формы.

Но все же сверхпроводник не является проводником в смысле теории Максвелла. Нельзя сказать, что он отличается от других проводников только бесконечно большой проводимостью. Тогда магнитное поле, проникая внутрь проводника, должно было бы «вмораживаться» в нем при падении температуры ниже критической точки. Но в 1933 г. измерения В. Мейснера и Р. Оксенфельда показали, что оно при этом будет вытеснено, причем не существенно, производят ли раньше охлаждение ниже критической точки, а потом возбуждают магнитное поле, или наоборот. Этот эффект Мейснера требует дополнения теории Максвелла на совершенно новых основах.

По вопросу об отношении электромагнитного поля к его зарядам взгляды физиков менялись. Подобно тому как Ньютон и его последователи рассматривали гравитацию как причинно обусловленный результат действия масс, так каждый физик первоначально рассматривал электрические силы как результат действия зарядов. Фарадей и Максвелл выдвинули на передний план понятие поля, а заряды были сведены к своего рода сингулярным точкам поля. Но отношение опять перевернулось, когда в связи с электронной теорией на передний план выступили атомные носители электрических элементарных зарядов. Нам кажется, что ни одно из этих воззрений не соответствует фактам. Заряды и поле настолько связаны друг с другом, что одно не может существовать без другого. Поэтому наука может с одинаковым успехом как принимать заряды за основу для познания поля, так и заключать о зарядах из изменений электрических силовых линий. Это - логические заключения; они не имеют дела с реальным отношением причины и следствия. То же, конечно, относится к взаимоотношениям между полем тяготения и его массами.

Своеобразны отношения между учением об электричестве и механикой. Как уже говорилось, Максвелл пытался в 1862 г. дать механическую картину магнитного поля. Позднее, в период прогрессирующего признания его теории, многие пытались более рациональным путем представить механику эфира как основу для такой картины. И до известной степени можно подчинить теорию линейных замкнутых (квазистационарных) токов теории циклов, разработанной Гельм-гольцем на основе механики. Но это не больше, чем математическая аналогия между различными видами физических процессов. Во всяком случае она характерна для проникновения электродинамических воззрений в широкие круги; последнее иллюстрируется тем, что современный инженер чаще объясняет действие механических машин через соответствующую электрическую схему. Но постепенно к 1900 г. поняли, что общее сведение электродинамики к механике невозможно.

С 1880 г. постепенно выступала противоположная мысль: свести механику к электродинамике. То, что движущийся носитель заряда несет с собой свое электрическое поле и что он имеет количество движения, связано с идеей электромагнитного происхождения инертной массы. Некоторые пытались любую массу рассматривать как электромагнитную массу. В 1902 г. эта воззрение нашло свое математическое отражение

в теории Макса Абрагама (1875-1922) относительно импульса движущегося электрона, представляемого в виде заряженного шара; масса получалась зависящей от скорости, и формула Абрагама долгое время конкурировала с релятивистской формулой (гл. 2).

Но и от этой идеи физика отошла. Опыты дали, наконец, однозначное решение в пользу релятивистской формулы; к тому же теория Абрагама получала для пропорциональности между энергией и покоящейся массой другой коэффициент, чем выступающий в эйнштейновском законе инертности энергии, нашедшем полное подтверждение в ядерной физике (гл. 11). Однако в качестве подготовки релятивистской динамики работы Абрагама имели большое значение.

Перейти на страницу: 2 3 4 5 6 7 8

Copyright © 2010 - All Rights Reserved - www.physicinweb.ru