Электричество и магнетизм

Несмотря на свою внутреннюю замкнутость и полное соответствие с опытом, теория Максвелла только постепенно находила признание среди физиков. Слишком необычными были ее идеи. Даже люди масштаба Гельмгольца и Больцмана много лет потратили на овладение ею.

В 1879 г. Берлинская Академия поставила конкурсную задачу: экспериментально доказать влияние диэлектрика на магнитную индукцию; в 1887 г. ее разрешил Г. Герц посредством быстрых колебаний. Важным результатом подобных размышлений явилось также исследование Конрада Рентгена (1845-1923) в 1888 г. Он обнаружил, что магнитные действия движущегося электрически поляризованного диэлектрика таковы же, как действия электрического тока. Это соответствует идее Фарадея. Мы называем установленный эффект током Рентгена. Открытие в 1888 г. электромагнитных волн Герцем положило конец всем сомнениям. Из числа колебаний и длины волн он непосредственно определил скорость их распространения и нашел ее равной скорости света.

Предистория этого открытия связана с сочинением Гельмгольца «О сохранении силы» (1847,. Из различных наблюдений над разрядами лейденских банок и особенно из независимости порождаемого при этом джоулева тепла от всех особенностей проволоки, замыкающей контур, Гельмгольц заключил о колебательном характере разряда. Точно так же в связи с принципом сохранения энергии Вильям Томсон (лорд Кельвин) дал в 1853 г. математическую теорию этого явления, к которой мы едва ли что-нибудь можем прибавить. Беренд Вильгельм Феддерсен (1832-1918) наблюдал с 1858 до 1862 г. эти колебания в виде

разрядной искры во вращающемся зеркале. В 1870 г. Фридрих Вильгельм Безольд (1837-1907) явно обнаружил колебания в проводящих проволоках со свободным концом и в цепи резонатора с разомкнутым искровым промежутком. Но впервые в руках Герца подобные резонаторы стали средством исследования волн в атмосфере, средством доказательства их поляризации, отражения, преломления, а также интерференции; они дали возможность также измерить длины волн и тем самым скорость распространения.

Волны, с которыми экспериментировал Герц, были сильно затухающими. Если мы теперь можем повторить его опыты с незатухающими волнами и, следовательно, с большей точностью, то этим мы обязаны технике. Но эта техника прошла трудный путь до 1913 г. и позже, пока научились получать незатухающие волны на основе принципа обратной связи (гл. 1), что было использовано для беспроволочного телеграфа и других подобных целей.

Как за Ньютоном последовала эпоха математического оформления механики, так отныне наступила пора математической обработки теории Максвелла. Для представления магнитных вихревых полей стационарных токов уже в прежние времена был введен вектор-потенциал. Теперь ему и скалярному потенциалу электростатики был противопоставлен запаздывающий потенциал, введенный в 1898 г. Альфредом Мари Лиенаром и в 1900 г. Эмилем Вихертом (1861-1928). В этом потенциале конечная скорость распространения электромагнитных волн находит свое наиболее четкое выражение. Перечисление всех исследователей, которые математически решали важные научные и технические проблемы переменных электрических полей, выходит далеко за рамки данной книги. В современном изложении теория Максвелла является замечательным творением, равноценным механике.

В начале XX века учение об электричестве и магнетизме казалось достаточно завершенным, тем более, что незадолго до этого атомистика внесла порядок и ясность в понимание явлений разряда в разреженных газах. Однако именно в самой существенной области этого учения, в области электропроводности, было открыто новое неожиданное явление. В 1835 г. измерениями Э. X. Ленца (1804-1865) было показано, что сопротивление металлов при охлаждении уменьшается. Камерлинг-Оннес (1853-1926) исследовал это явление при температуре 10° К, достигнутой в 1908 г. при ожижении гелия. Он нашел, что у металлов, например у золота, серебра, меди, имеется некоторое критическое значение сопротивления, ниже которого оно не падает. Но в 1911 г. он обнаружил сначала у ртути, а затем у свинца, олова и некоторых других металлов внезапное исчезновение сопротивления электрическому току, как только температура падала ниже критической точки, характерной для этих тел. Так была установлена сверхпроводимость. В 1914 г. Камерлинг-Оннес показал, что ток, циркулирующий в сверхпроводящем кольце, не изменялся по величине в течение нескольких дней без приложения какой-либо электродвижущей силы. Наконец, Камерлинг-Оннес нашел также, что при постоянной температуре сверхпроводимость может быть разрушена действием магнитного поля, после чего вступает в свои права закон Ома. Напряженность магнитного поля, при котором еще сохраняется сверхпроводимость, изменяется по мере понижения температуры и у чистых металлов может достигать несколько сот гаусс.

Перейти на страницу: 1 2 3 4 5 6 7 8

Copyright © 2010 - All Rights Reserved - www.physicinweb.ru