Критика теории струн

Уже запланировано несколько экспериментов, которые, как надеются физики, помогут косвенным образом проверить теорию струн.

• Большой адронный коллайдер, возможно, окажется достаточно мощным для получения суперчастиц, которые предсказаны теорией суперструн (как и другими теориями суперсимметрии) и представляют собой высшие моды колебаний.

• Как я уже упоминал, в 2015 г. в космос будет запущена LISA — космическая антенна с лазерным интерферометром. LISA и ее преемник, Наблюдатель Большого взрыва, окажутся, возможно, достаточно чувствительными для проверки нескольких теорий о том, что было до Большого взрыва, включая и различные версии теории струн.

• Множество лабораторий сейчас пытаются обнаружить, действует ли в миллиметровом масштабе знаменитый ньютоновский закон о том, что сила притяжения обратно пропорциональна квадрату расстояния. Отклонения от этого закона могут говорить о существовании высших измерений. (Если существует, к примеру, четвертое пространственное измерение, то сила притяжения должна уменьшаться пропорционально кубу, а не квадрату расстояния.) Последняя версия теории струн (М-теория) утверждает, что измерений на самом деле 11.

• Многие лаборатории пытаются обнаружить темное вещество, или скрытую массу, ведь Земля движется в космическом потоке темного вещества. Теория струн позволяет сформулировать конкретные проверяемые предсказания о физических свойствах темного вещества — ведь оно, вероятно, представляет собой высшие колебания струн (например, фотино).

• Есть надежда, что серия дополнительных экспериментов (к примеру, эксперименты по определению поляризации нейтрино, проводимые на Южном полюсе) позволит обнаруживать черные мини-дыры и другие странные объекты путем анализа аномалий космических лучей с энергиями, превосходящими, возможно, энергии частиц в Большом адронном коллайдере. Эксперименты с космическими лучами и с коллайдером откроют новые интересные горизонты, помимо Стандартной модели.

• Некоторые физики допускают, что сила Большого взрыва могла разогнать какую-нибудь крошечную суперструну до поистине космических масштабов. Физик Александр Виленкин из Университета Тафтса пишет: «Одна очень интересная возможность заключается в том, что суперструны . могут достигать астрономических масштабов . В этом случае мы могли бы пронаблюдать их в небе и таким образом напрямую проверить теорию суперструн». (Вероятность найти в космосе гигантскую реликтовую суперструну, сохранившуюся с момента Большого взрыва, очень мала.)

Перейти на страницу: 1 2 

Copyright © 2010 - All Rights Reserved - www.physicinweb.ru