Некоторые принципы творческого воспитания и образования современной молодежи
Спецшколы по основным отраслям знания, задачи которых — разрабатывать и внедрять наиболее передовые методы преподавания в масштабе всей страны, всегда будут нужны.
Хорошо известно, что при воспитании у молодежи творческих способностей очень важна роль преподавателя. Тут мы встречаемся с большими трудностями, так как практически оказывается невозможным обеспечить среднюю школу достаточным числом талантливых преподавателей, умеющих индивидуально подходить к ученикам и воспитывать в молодежи самостоятельность мышления.
Большинство преподавателей ставят перед собой задачу передать ученикам определенное количество знаний и оценивают успеваемость ученика исходя из того, насколько твердо он их усвоил. К тому же и сама школа для оценки самостоятельности мышления не имеет критерия. Подбор подходящего типа преподавателей является для поставленной задачи наиболее трудной проблемой. Мне думается, что к решению этой проблемы есть путь, хотя он и не прост. Этот путь аналогичен тому, который мы широко применяем в одном из высших учебных заведений в Москве, созданном специально для подготовки научных работников в ведущие исследовательские институты, преимущественно находящиеся в ведении Академии наук СССР.
Основная идея, которую мы использовали, заключается в следующем. История науки показывает, что те ученые наиболее плодотворно ведут свои исследования, которые имеют учеников и вместе с ними работают. Это видно на примере самых крупных ученых. Например, Менделеев открыл периодическую систему элементов, когда искал способ, как описать свойства элементов, чтобы их лучше могли запомнить студенты, которым он читал лекции по основам химии. Молодой Лобачевский, когда преподавал геометрию в школе взрослых, проходящих курс средней школы, не находил удовлетворительного способа объяснения ученикам очевидности постулата о непересекаемости параллельных линий, и он открыл неевклидову геометрию. Стокс, составляя задачи для студентов по математике, предложил в одной из них доказать, что интеграл, взятый по контуру, просто связан с величиной потока, проходящего через этот контур. Теперь это называется теоремой Стокса, хотя на самом деле он никогда не опубликовывал ее доказательства и предоставлял доказывать самим студентам. Как известно, эта теорема стала фундаментальной, поскольку она легла в основу уравнений Максвелла. В знаменитом трактате Максвелл при выводе своих уравнений ссылается на сборник задач, составленный Стоксом. Эти примеры можно продолжить до наших дней. Так Шредингер нашел свои знаменитые уравнения в процессе объяснения работы де Бройля группе аспирантов Цюрихского университета, где он делал это по просьбе Дебая, который и рассказал мне о том, как были найдены основные уравнения квантовой механики.
Исходя из этого в ряде исследовательских институтов мы предлагаем молодым научным сотрудникам читать небольшие курсы лекций студентам и вести с ними семинары, обычно по специальным предметам. Это отнимает у них не более одного рабочего дня в неделю. Введена хорошая оплата за эту работу. Мы считаем, что в результате молодой научный работник получает не меньшую пользу, чем сами студенты. Бывали случаи, когда молодые научные сотрудники по собственной инициативе шли в среднюю школу и преподавали физику в старших классах; это тоже давало положительные результаты.
Мне думается, что вполне возможно организовать преподавание физики в старших классах средних школ, используя те же принципы и привлекая к этому молодых научных работников из исследовательских институтов. Это будет полезно и им, и ученикам, трудность тут в организации. Ведь надо, чтобы для научных работников это не было обременительной нагрузкой и не занимало больше одного рабочего дня в неделю. Но в средней школе это вызывает ряд организационных затруднений в распределении работы. Возникает необходимость в большом числе преподавателей, так как каждый из научных сотрудников не сможет уделить школе много времени, что, в свою очередь, усложняет работу административного аппарата.