Проблемы жидкого гелия

Пограничные слои, играющие, как мы видели, такую важную роль в явлениях жидкого гелия-II, выдвигают ряд проблем для исследования. Например, далеко не ясен вопрос о механизме течения гелия в тонких пленках по поверхности и о возможных скоростях этого течения. Поверхностный слой жидкого гелия-II, участвующий в противотоке, казалось бы, следовало считать, по ряду общих теоретических соображений, очень тонким, но тогда оказывается, что скорости этого течения были бы очень велики: порядка 200 м/сек. Более подробный анализ показывает, что нет никаких физических законов, препятствующих принципиальному существованию таких больших скоростей в тонкой пленке, но в то же время признать их существование мы сможем только после того, как подтвердим наличие этой скорости экспериментально.

Неясен еще такой вопрос: есть ли «сверхтекучесть» только свойство гелия-II в его поверхностных слоях или это есть свойство всей массы гелия. Анализ экспериментальных данных не дает до сих пор однозначный ответ на этот вопрос, а, наоборот, ведет к ряду интересных противоречий, подлежащих опытному изучению.

Можно указать целый ряд еще не решенных вопросов.

Но уже сейчас интересно обсудить, какое возможное значение для развития современной теоретической физики могут иметь уже полученные данные. Как мы уже указывали, в сверхтекучести гелия-II мы имеем явление, чрезвычайно похожее на сверхпроводимость. В обоих случаях при температуре вблизи абсолютного нуля, где можно ждать проявления квантовой природы явлений, процесс течения как электричества, так и самой материи начинает происходить без потерь. Было бы неожиданно, если бы оба эти явления не определялись одной теорией, пока еще непонятной особой стороной квантовых процессов в конденсированном состоянии.

В сверхпроводимости мы имеем случай, когда носители электричества — электроны — могут без трения течь через кристаллическую решетку. В процессе сверхтекучести мы имеем атомы, которые могут организованно двигаться относительно друг друга тоже без трения. Теоретики ищут те квантовые соотношения, которые объясняют возможность такого движения без трения, и естественно думать, что им удастся более легко решить задачу, изучая взаимодействие электронов с атомами, образующими кристаллическую решетку металла.

На этом можно было бы и кончить изложение наших работ, если бы совсем неожиданно для меня не была предложена одна идея практического применения большой текучести жидкого гелия. Я хочу вам рассказать о ней не потому, что я уверен в ее практическом осуществлении, а только чтобы проиллюстрировать, что всякое обнаруженное в природе явление неизбежно открывает новые возможности, которые так или иначе всегда будут использованы в нашей жизни. Эти применения могут быть совсем неожиданными и относятся к областям, от которых сам исследователь очень далек и о которых он не осведомлен и не мог думать, когда вел свои работы. Смелая идея применения жидкого гелия была мне высказана проф. Л. Г. Лойцянским. Его идея пока очень далека от осуществления и может вызвать еще целый ряд возражений, но столь интересна, что о ней следует рассказать.

Дело касается испытания крыльев и фюзеляжа аэропланов на обтекаемость. Сейчас инженерам приходится пользоваться очень большими и дорогими аэродинамическими трубами, где аэропланы испытывают в натуральную величину. Как известно, нельзя применять уменьшенные модели аэропланов, ибо теория подобия, на которой основывается экспериментирование на моделях, здесь полностью не применима. При уменьшении масштабов в аэродинамических трубах требуется такое же уменьшение так называемой кинематической вязкости окружающей среды. Эта кинематическая вязкость есть частное от деления вязкости на плотность среды. Чтобы уменьшить ее, пытались поднимать давление воздуха в аэродинамических трубах, так как при этом плотность воздуха увеличивалась, вязкость оставалась неизменной, и, следовательно, кинематическая вязкость уменьшалась. Это оказалось очень дорого и сложно.

Интересно, что кинематическая вязкость почти для всех текучих сред оказывается больше или мало отличается от кинематической вязкости воздуха. Исключение одно — это жидкий гелий. Предложение проф. Л. Г. Лойцянского и сводится к тому, чтобы изучать аэродинамические свойства моделей самолетов в потоке жидкого гелия. Теоретически идея правильная, экспериментально смелая, и возможно, что ей принадлежит будущее. Во всяком случае до ее практического осуществления надо еще много поработать как над свойствами самого жидкого гелия, так и над техникой осуществления этого эксперимента.

Перейти на страницу: 6 7 8 9 10 11 12

Copyright © 2010 - All Rights Reserved - www.physicinweb.ru