Разгадка радиоактивности

Гениальное изобретение Крукса, сделанное им в том же 1903 году, в котором Резерфорд и Содди впервые выдвинули свою гипотезу о превращении химических элементов, знаменует, как и эта гипотеза, начало совершенно новой эпохи в физике. Не странно ли, что атомы стали видимой, ощутимой реальностью как раз в то время, когда было уничтожено представление о неразрушимости и непревращаемости атомов? Физики так долго и так тщетно стремились доказать, что атомы действительно существуют, и вот наконец эта цель достигнута: спинтарископ Крукса позволяет видеть действия отдельных атомов - заряженных атомов гелия. Но в то же самоё время, когда таким образом реальность атомов доказана совершенно неоспоримо, становится ясным, что атомы совсем не те вечные, бессмертные, неразрушимые частицы, какими их представлял себе Джон Дальтон: атомы рождаются, живут и умирают, с атомами происходят чудесные превращения, ослепительные взрывы, они разлетаются на части, и возникающие при этом осколки - это новые атомы. Похоже на то, что средневековые алхимики, стремившиеся превращать одни химические элементы в другие и так осмеянные за это впоследствии, в конце концов оказались правы. Но не будем преувеличивать их правоту. Вспомним, как все ухищрения лабораторной техники оказались бессильными повлиять на быстроту распада радия, вспомним, какими равнодушными, неприступными и забронированными от всех внешних воздействий оказались атомы этого чудесного вещества.

Все это показывает, что радиоактивность принадлежит совершенно особому миру явлений, с которым физики никогда не встречались раньше,- иными словами, что в радиоактивных явлениях действуют совершенно огромные, чудовищные силы, несравнимые со всем, что было известно физике прежде, и, значит, такие же огромные чудовищные силы требуются для того, чтобы управлять радиоактивными явлениями и изменять их естественное течение. Значит, Джон Дальтон был в каком-то смысле прав, хотя правота его и не была абсолютной, а относилась только к некоторому ограниченному кругу явлений: в пределах этого круга явлений атомы действительно неразрушимы и бессмертны, и требуется далеко перейти за пределы этого круга и привести в действие силы совершенно иного порядка («тонкий и сильный агент» Роберта Бойля) для того, чтобы вызвать превращение одних химических элементов в другие. В обыкновенных явлениях, изучаемых в химической лаборатории, атомы действительно никогда не превращаются друг в друга, и ошибка средневековых алхимиков и заключалась в том, что они пытались вызвать это превращение, не располагая «тонким и сильным агентом», а пользуясь лишь обыкновенными силами, которые развиваются при химических реакциях. В тех случаях, когда они утверждали, что им действительно удалось получить золото из других металлов, все это объяснялось или сознательным надувательством, или экспериментальной ошибкой (например, золото извлекалось из какого-либо химического соединения, содержащего золото, путем замещения золота другим металлом, а неискушенному экспериментатору казалось, что он превращает этот металл в золото).

Как только изобретенный Круксом спинтарископ стал известен остальным физикам, возникла задача счета альфа-частиц. В спинтарископе Крукса такой счет невозможен, потому что иголка находится слишком близко от экрана (несколько миллиметров) и в каждый момент на экран сыплется целый дождь альфа-частиц, так что сосчитать их нет никакой возможности. Но если поставить препарат с известным количеством радия достаточно далеко от экрана (но так, чтобы между препаратом и экраном был не воздух, поглощающий альфа-частицы, а безвоздушное пространство), то можно будет сосчитать количество вспышек, загорающихся на каждом квадратном сантиметре поверхности экрана в среднем в течение секунды. Отсюда уже будет легко сосчитать, сколько альфа-частиц испускает препарат по всем направлениям, т. е, узнать в конце концов, сколько альфа-частиц испускает каждый грамм радия в секунду. Знать это число важно по двум причинам: во-первых, если мы затем каким-нибудь способом измерим заряд, уносимый всеми альфа-частицами, которые вылетают в секунду из грамма радия, то мы можем, разделив его на число этих частиц, узнать заряд отдельной альфа-частицы; во-вторых, зная число альфа-частиц, испускаемых в секунду граммом радия или урана, мы тем самым знаем, сколько атомов радия или урана распадается в секунду из общего числа этих атомов в одном грамме,- иными словами, мы сумеем вычислить быстроту распада радия и урана.

В 1908 году немецкий физик Э. Регенер действительно осуществил такой подсчет числа вспышек. Но этот метод счета альфа-частиц не очень надежен, так как он сильно зависит от состояния глаз наблюдателя: глаза очень быстро утомляются, и поэтому подсчет альфа-частиц по наблюдению вспышек на экране из сернистого цинка требует .миллиона предосторожностей. Физики стремились заменить метод вспышек каким-нибудь другим, более объективным (не так сильно зависящим от наблюдателя) и потому более надежным методом. Таких методов было придумано целых три -один замечательнее другого. Эти три объективных метода обнаружения отдельных альфа-частиц мы по порядку опишем и только после этого перейдем к тем результатам, которые были с помощью этих методов получены.

Перейти на страницу: 6 7 8 9 10 11 12 13 14 15 16

Copyright © 2010 - All Rights Reserved - www.physicinweb.ru