Пикосекунды

Ну и в качестве иллюстрации того, как работает этот метод накачки и зондирования,

Ну и в качестве иллюстрации того, как работает этот метод накачки и зондирования, я расскажу про еще одну работу, которая тоже была выполнена не так давно, в которой люди впервые увидели фононы (подробнее об этой работе см.: Атомное кино). Это, конечно, когерентные фононы, не однократные, не одиночные, но всё равно фононы, то есть колебания кристаллической решетки, прямо воочию, в реальном времени.

Сначала пару слов про типичные времена. Если вы возьмете типичную скорость движения атомов, поделите на типичные межатомные расстояния в кристалле, вы получите времена порядка долей пикосекунд. Реально в кристаллах у нас атомы движутся не по одиночке, а синхронно. Скажем, фонон — это синхронные колебания сразу большой группы атомов. Если вы возьмете типичное число этих атомов в длине волны — n, — скажем, десятки, сотни, тысячи, то у вас как раз получится период колебаний этих фононов в пикосекундном диапазоне.

Как с помощью этой методики накачки и зондирования можно увидеть такие фононы? Делается это таким образом: посылаются на исследуемый образец два импульса, которые четко скоррелированы по времени. Это импульсы из разных диапазонов электромагнитного излучения. Сначала посылается очень короткий и мощный инфракрасный импульс, который буквально наносит точечный удар по поверхности кристалла, и он генерирует в данном месте и в данное время поток фононов, которые уходят вглубь кристалла, то есть колебания решетки около поверхности. И в тот же момент или с определенной конкретной сдвижкой по времени присылается туда слабый диагностический рентгеновский импульс. Рентгеновский импульс подбирается с такой длиной волны, чтобы он эффективно отражался от поверхности. Дело в том, что (вы представляете, да?) кристалл имеет межатомное расстояние порядка нескольких ангстрем. И поэтому, если подобрать рентгеновский импульс с длиной волны тоже порядка нескольких ангстрем, у вас эффективно начинается дифракция. То есть кристалл выступает в виде дифракционной решетки для рентгеновского света. Этот рентгеновский лучик можно отразить и дальше с помощью него можно смотреть на колебания кристаллической решетки, потому что эти колебания действительно отражаются в поведении рентгеновского импульса.

Вот просто типичная картинка. Если взять длину волны порядка нескольких ангстрем,

Вот просто типичная картинка. Если взять длину волны порядка нескольких ангстрем, получится дифракция света на кристаллической решетке. Самый простейший случай — это просто отражение получается от кристаллических плоскостей. За этим отраженным пучком рентгеновского света можно наблюдать, можно измерять его интенсивность, в том числе при разных углах, и смотреть на колебания. Это, кстати, только один из примеров довольно широкого класса акустооптических явлений — явлений, в которых оптика связана с акустикой, то есть со звуковыми движениями или с колебаниями атомов.

И вот тоже результат из экспериментальной работы. Смотрите: здесь на картинке (это пикосекунды по времени . это просто интенсивность) показан профиль рентгеновского импульса. Штриховой линией показан профиль, когда у нас не было удара по кристаллу, просто прилетел импульс, отразился и задетектировался. А сплошной линией показано то, что происходит, когда у нас нанесен удар по кристаллу в момент времени ноль. Вот видно, что здесь есть колебания интенсивности. И особенно красивым это всё становится, когда мы отнормируем ее на невозмущенный случай, то есть поделим сплошную кривую на штрихованную кривую. И тогда у нас получается такая отнормированная интенсивность, сначала она была единичка, то есть стандартный случай, потом вдруг она упала и начала колебаться.

Перейти на страницу: 1 2 3 4 5

Copyright © 2010 - All Rights Reserved - www.physicinweb.ru