Наносекунды

Теперь давайте перейдем дальше еще, перейдем в следующий диапазон — это наносекунды. И вот про наносекунды стоит поговорить чуть подробнее. Что такое наносекунды? Это, вообще-то, нечто, с чем мы уже в обычной жизни не сталкиваемся. Если взять какие-нибудь типичные явления, которые происходят в обычной жизни, с типичными скоростями — ну, например, звук, ударные волны или просто движение тел, — то они редко превышают один километр в секунду. Но один километр в секунду, если пересчитать его на наносекунды, на 10–9 секунды, составляет буквально считанные микроны. Даже если взять скорость света и умножить ее на одну наносекунду, тоже получится дистанция не такая уж большая, всего 30 см. И это всё приводит нас к очень важному выводу: что когда мы изучаем наносекундный диапазон и ниже, мы уже не изучаем тела — мы изучаем вещество. Нам совершенно уже не важно, из какого тела произошло это вещество. Поэтому мы переходим именно к изучению материи, а не тел.

Но как это всё можно изучать? В принципе, конечно, есть еще видеокамеры, которые

Но как это всё можно изучать? В принципе, конечно, есть еще видеокамеры, которые немножко дотягивают и в наносекундный диапазон. Насколько я знаю, сейчас рекорд — это 6 миллионов кадров в секунду в оптическом диапазоне, то есть один кадр за каждые 160 наносекунд. Кое-что, конечно, можно увидеть здесь, но если у вас есть событие, которое протекает, скажем, 10 наносекунд, то, конечно, никакую динамику его вы с помощью видеокамеры не увидите. Поэтому так или иначе приходится от визуального наблюдения переходить к каким-то, может быть, более сложным, но и более прозорливым методам исследования, которые становятся всё более косвенными, когда мы уходим во всё более и более мелкие диапазоны времен.

В принципе, таких методов достаточно много. И моя лекция, собственно, им и посвящена. Но прежде чем рассказывать о них, я решил, что будет полезно здесь проиллюстрировать немножко иную мысль: чтобы изучать быстропротекающие процессы, иногда вовсе не требуется успевать следить за ними. Иногда достаточно как-то хитро поставить эксперимент и посмотреть на его результаты — с медленным детектором, с медленной техникой. Но потом, глядя на эти результаты, уже можно восстановить динамику события, которое протекало на наносекундном масштабе. И вот я нашел одну из работ, которая была выполнена не так давно, которая прекрасно иллюстрирует эту мысль.

Эта работа относится к разделу физики под названием «физика поверхности». Физика

Эта работа относится к разделу физики под названием «физика поверхности». Физика поверхности изучает, грубо говоря, то, что происходит на поверхности твердого тела — например, кристалла. На самом деле, там происходит много интересного, там есть термодинамические, электрические, магнитные явления, механические явления. И они все протекают, как правило, совсем иначе, чем в толще. Поэтому в этой области физики конденсированных сред есть свои загадки, свои проблемы и свои методы исследования.

Один из конкретных вопросов, который очень важен, конечно, для этой области, — вопрос о том, как живет атомарно гладкая поверхность кристалла при конечной температуре, то есть при обычной комнатной температуре. Что значит «атомарная гладкость»? Это значит, что его вырастили атомарно гладко и дальше отпустили в свободное плавание. Он же не будет непрерывно вот так стоять, там есть тепловые флуктуации, и иногда эти флуктуации заставляют какой-нибудь атом выпрыгнуть и начать гулять по поверхности. А на месте этого атома тогда появляется поверхностная дырка — называется она «вакансия», — которая тоже, оказывается, обладает подвижностью: она начинает гулять туда-сюда. Как вакансия гуляет, это тоже понятно. Просто соседние атомы перескакивают в нее, и в результате получается, что вакансия как бы перемещается. Так вот. Эти вакансии . Это значит, что атомарно гладкую поверхность можно представлять себе как разреженный газ двух типов частиц: поверхностные атомы, которые прыгают поверху, и вакансии, которые тоже вот как-то так диффундируют. У этого газа есть своя концентрация, есть свой типичный коэффициент диффузии, свои типичные времена перескоков, и это всё надо изучать, поскольку это действительно то, как живет поверхность.

Перейти на страницу: 1 2 3

Copyright © 2010 - All Rights Reserved - www.physicinweb.ru