Будущее одной иллюзии. Перспективы пространства и времени

Габор придумал установку для записи на специальной плёнке как интенсивности, так и фазовой информации света, рассеянного объектом. Переводя на современный язык, его подход был сродни экспериментальной установке на рис. 7.1, за исключением того, что один из двух лазерных лучей отражался объектом, расположенным на его пути к экрану. Если экран покрыт плёнкой, содержащей подходящий эмульсионный слой, то на плёнке запишется интерференционная картина (в виде мельчайших линий) наложения двух лучей, один из которых беспрепятственно попал на экран, а другой был рассеян объектом. Интерференционная картина содержит информацию как об интенсивности отражённого света, так и о сдвиге фаз между двумя световыми лучами. Изобретение Габора внесло существенный вклад в научные исследования, позволив значительно усовершенствовать широкий круг измерительных методов. Но для широкой публики самым выдающимся достижением стала разработка художественных и промышленных голограмм.

Обычные фотографии выглядят плоскими из-за записи только интенсивности света. Для передачи глубины нужна фазовая информация. Причина в том, что по мере движения световой волны её амплитуда меняется от минимума к максимуму и обратно, так что фазовая информация — или, точнее, информация о сдвиге фаз между световыми лучами, отражёнными соседними частями объекта, — запечатлевает разницу расстояний, проходимых световыми лучами от разных частей объекта. Например, если вы смотрите на кошку, сидящую прямо перед вами, то её глаза находятся от вас чуть дальше, чем её нос, и эта разница отражается в сдвиге фаз между световыми лучами, отражёнными от разных частей её мордочки. Освещая затем голограмму лазерным светом, мы задействуем фазовую информацию, записанную на голограмме, и тем самым добавляем глубину к изображению. Мы все видели результаты: потрясающие трёхмерные изображения, порождаемые двумерным куском пластика. Хотя заметим, что наши глаза не используют эту фазовую информацию для передачи глубины картины. Вместо этого они используют параллакс: небольшая разница в углах, под которыми свет от одной и той же точки доходит до правого и левого глаза, даёт нужную информацию, которую мозг затем переводит в расстояние до этой точки. Вот почему, к примеру, если человек слепнет на один глаз (или просто прикрывает его), то ощущение глубины ухудшается.

Если вам не хочется переписывать Платона, то модель мира на бране дает голографическую версию мира, в которой тени вновь занимают надлежащее место. Представим, что мы живём на 3-бране, окружающей четырёхмерную область (подобно тому как двумерная кожица яблока окружает его трёхмерную внутренность). В такой модели мира голографический принцип скажет, что наши трёхмерные ощущения являются тенями четырёхмерной физики, происходящей в области, окружённой нашей браной.

Для математически подкованного читателя это утверждение можно сформулировать следующим образом: луч света (или, в общем смысле, любая безмассовая частица), испущенный из любой точки внутри антидеситтеровского пространства, достигает пространственной бесконечности и возвращается назад за конечное время.

Для математически подкованного читателя сообщаем, что Малдасена работал в контексте AdS5 × S5, и теория на границе возникала из границы AdS5.

Перейти на страницу: 76 77 78 79 80 81 82

Copyright © 2010 - All Rights Reserved - www.physicinweb.ru