Будущее одной иллюзии. Перспективы пространства и времени

Не так уж трудно понять, в упрощённых терминах, как планковская длина вкралась в анализ Клейна. Общая теория относительности и квантовая механика используют три фундаментальные постоянные природы: c (скорость света), G (константа гравитационного взаимодействия) и ħ (постоянная Планка, описывающая величину квантовых эффектов). Эти три константы могут быть так объединены, чтобы получилась величина с размерностью длины: (ħG /c 3)1/2, которая, по определению, является планковской длиной. После подстановки численных значений трёх констант находим для планковской длины примерно 1,616 × 10−33 см. Таким образом, если только в теории не получается безразмерный множитель, существенно отличающийся от единицы, — что не часто происходит в простой, хорошо сформулированной физической теории, — мы ожидаем, что планковская длина будет характерной величиной длины, такой как длина свёрнутого пространственного измерения. Тем не менее заметим, что это не исключает возможности, что размеры могут оказаться больше планковской длины, и в главе 13 мы познакомимся с недавней интересной работой, в которой исследуется эта возможность.

Включение в теорию заряженной частицы с относительно маленькой массой оказывается труднопреодолимой проблемой.

Заметим, что требование симметрии, заключающейся в однородности пространства, которое мы использовали в главе 8, чтобы сузить количество форм Вселенной, мотивируется астрономическими наблюдениями (такими как наблюдения микроволнового фонового излучения) трёх больших измерений. Эти условия симметрии не влияют на форму возможных шести микроскопических дополнительных измерений.

Позвольте мне подготовить вас к одному существенному результату, с которым мы столкнёмся в следующей главе. Струнные теоретики десятки лет знали, что уравнения, которые они обычно используют для математического анализа теории струн, являются приближёнными (точные уравнения оказывается трудно найти и понять). Однако большинство думает, что приближённые уравнения были достаточно точны для определения требуемого числа дополнительных измерений. Совсем недавно (и к изумлению большинства физиков, работающих в этой области) некоторые струнные теоретики показали, что приближённые уравнения теряют одно измерение; сейчас признано, что теория требует семь дополнительных измерений. Как мы увидим, это не компрометирует материал, обсуждаемый в этой главе, но показывает, что он должен быть вложен в более широкую, фактически ещё более унифицированную схему. Эксперты в теории струн (и те, кто прочитал «Элегантную Вселенную» , главу 12) заметят, что более точное утверждение состоит в том, что определённые формулировки теории струн (обсуждаемые в главе 13 этой книги) допускают предельные случаи, в которых имеется одиннадцать пространственно-временных измерений. Всё ещё обсуждается, не лучше ли думать о теории струн как о теории, на фундаментальном уровне действующей в одиннадцати пространственно-временных измерениях, или одиннадцатимерная формулировка должна рассматриваться как частный предел (например, когда константа струнного взаимодействия выбирается большой в формулировке теории типа IIA) наряду с другими пределами. Так как это различие мало влияет на наше обсуждение на общем уровне, я выбрал первую точку зрения, в значительной степени из-за литературной простоты, когда имеется фиксированное и неизменное число измерений.

Перейти на страницу: 65 66 67 68 69 70 71 72 73 74 75

Copyright © 2010 - All Rights Reserved - www.physicinweb.ru