Будущее одной иллюзии. Перспективы пространства и времени

Уже здесь имеет смысл подчеркнуть, что речь идёт об известной Вселенной (точнее, находящейся сейчас внутри нашего космологического горизонта). Отсюда вовсе не следует, что вообще вся Вселенная (включая её часть за пределами горизонта) тоже сожмётся до размеров точки. Более того, если Вселенная бесконечная и плоская сейчас, то она вполне могла быть бесконечной и плоской уже в момент Большого взрыва. Автор коснётся этих вопросов чуть ниже. (Прим. ред.)

Если вы повысите температуру много больше, то получите четвёртое состояние материи, известное как плазма , в котором атомы разрушаются на составляющие частицы.

Имеются любопытные вещества, такие как соли Рошелле, которые становятся менее симметричными при высоких температурах и более симметричными при низких температурах — противоположно тому, что мы, как правило, ожидаем.

Хотя уменьшение симметрии означает, что меньшее число преобразований проходят незамеченными, тепло, переданное окружающей среде во время такой трансформации, гарантирует, что полная энтропия — включая энтропию окружающей среды — всё же возрастает.

Одно различие между полями сил и материи выражается принципом исключения Вольфганга Паули. Этот принцип показывает, что, в то время как огромное количество частиц — переносчиков сил (вроде фотонов) могут объединяться, чтобы создать поля, понятные доквантовому физику, такому как Максвелл, — такие поля, которые вы видите всякий раз, когда заходите в тёмную комнату и включаете свет, но частицам материи в общем случае законы квантовой физики запрещают такое кооперирование согласованным, организованным способом. (Более точно, две частицы одного и того же типа, такие как два электрона, не могут иметь одинаковое состояние, тогда как для фотонов такого ограничения нет. Из-за этого поля материи в общем случае не имеют макроскопического, классического проявления.)

В схеме квантовой теории поля каждая известная частица выглядит как возбуждение определённого фундаментального поля, связанного с семейством, членом которого является частица. Фотоны есть возбуждения фотонного поля — т. е. электромагнитного поля; u -кварк является возбуждением поля u -кварков; электрон есть возбуждение электронного поля и т. д. Таким образом, вся материя и все силы описываются единым квантово-механическим языком. Однако оказалось, что очень трудно описать на этом языке все квантовые свойства гравитации, эту проблему мы будем рассматривать в главе 12.

Хотя поле Хиггса названо в честь Петера Хиггса, но жизненно важную роль в его появлении в физике и в его теоретическом исследовании сыграло большое число других физиков, среди них — Томас Киббл, Филип Андерсон, Роберт Браут и Франсуа Энглер.

Имейте в виду, что величина поля задаётся расстоянием от него до центра чаши, так что хотя поле имеет нулевую энергию , когда его величина находится в жёлобе чаши (поскольку высота над дном жёлоба обозначает энергию поля), его величина не равна нулю.

Терминология не особенно важна, но коротко укажем, откуда она происходит. Жёлоб на рис. 9.1в и г имеет симметричную форму (он круговой), в которой каждая точка эквивалентна любой другой (каждая точка жёлоба обозначает величину поля Хиггса с минимальной возможной энергией). Кроме того, когда величина поля Хиггса сползает на дно чаши, она располагается только в одной определённой точке жёлоба, таким образом, она «спонтанно» выбирает одно положение в жёлобе как специальное. Теперь все точки жёлоба не являются больше одинаково равноправными, поскольку одна выделена, так что поле Хиггса уничтожает или «нарушает» исходную симметрию между ними. Поэтому процесс, в котором поле Хиггса соскальзывает к одной частной ненулевой величине в жёлобе, называется спонтанным нарушением симметрии. Далее в тексте мы более детально опишем детали нарушения симметрии, связанные с формированием океана Хиггса. В описании в тексте величина поля Хиггса задаётся его расстоянием от центра чаши, так что вы можете удивиться тому, что множество разных точек на круговом жёлобе чаши — а именно те, которые находятся на одинаковом расстоянии от центра чаши, — дают одинаковую величину поля Хиггса. Ответ, для математически подготовленного читателя, состоит в том, что различные точки жёлоба представляют величины поля Хиггса с одной и той же абсолютной величиной, но с различными фазами (величина поля Хиггса является комплексным числом).

Перейти на страницу: 44 45 46 47 48 49 50 51 52 53 54

Copyright © 2010 - All Rights Reserved - www.physicinweb.ru