Будущее одной иллюзии. Перспективы пространства и времени
как CPT , но если T
-инвариантность безусловно требует введения операции CP , тогда T
больше не может быть интерпретирован просто как прохождение частицами их движения в обратном направлении (поскольку, например, сам тип частицы будет изменён таким T
— частицы будут заменены их античастицами, — а потому обратного движения оригинальных частиц уже не может быть). Оказалось, что имеются некоторые экзотические экспериментальные ситуации, в которых реализуется именно этот случай. Есть определённые виды частиц (K-мезоны, B-мезоны), манера поведения которых CPT -инвариантна, но не инвариантна относительно чистой операции обращения времени T . Это было установлено косвенно в 1964 г. Джеймсом Кронином, Валом Фитчем и их сотрудниками (за что Кронин и Фитч получили в 1980 г. Нобелевскую премию), которые показали, что K-мезоны нарушают CP -симметрию (следовательно, они должны нарушать T -симметрию, чтобы не нарушать CPT -симметрию). Позднее нарушение T -симметрии было непосредственно установлено в эксперименте CPLEAR в ЦЕРНе и в эксперименте KTEV в Фермилабе. Грубо говоря, эти эксперименты продемонстрировали, что если вам показали фильм с записью процессов, происходящих с этими мезонами, то вы будете в состоянии определить, прокручивается ли этот фильм в правильном направлении, или в обратном. Другими словами, эти особые частицы могут различать прошлое и будущее. Остаётся неясным, однако, имеет ли это какое-нибудь отношение к стреле времени, которую мы ощущаем в повседневном контексте. Как-никак, это экзотические частицы, которые могут быть рождены на короткие моменты в высокоэнергетических столкновениях, но они не являются частями привычных материальных объектов. Для многих физиков, включая меня, кажется маловероятным, что необратимость времени, проявляемая этими частицами, играет роль в разрешении загадки стрелы времени, так что мы не будем дальше обсуждать этот исключительный пример. Но правда заключается в том, что никто не знает этого с уверенностью.
Я иногда обнаруживаю нежелание согласиться с теоретическим утверждением, что кусочки яичной скорлупы могли бы на самом деле собраться в целое яйцо. Но симметрия законов физики по отношению к обращению времени, как более подробно рассматривалось в предыдущем примечании, означает, что это то, что могло бы случиться. На микроскопическом уровне разбивание яйца есть физический процесс, затрагивающий различные молекулы, из которых состоит скорлупа. Скорлупа трескается, поскольку удар, которому подверглось яйцо, заставляет разделяться группы молекул. Если бы эти движения молекул происходили в обратном направлении, молекулы объединились бы снова, собрав скорлупу в первоначальную форму.
Чтобы не отклоняться от обсуждения современного понимания этих идей, я пропустил одну очень интересную историю. Собственные раздумья Больцмана по поводу энтропии существенно уточнялись в течение 1870-х – 1880-х гг., когда очень полезными оказались взаимодействия и обмен информацией с такими физиками, как Джеймс Клерк Максвелл, лорд Кельвин, Джозеф Лошмидт, Джозайя Уиллард Гиббс, Анри Пуанкаре, С. X. Бербери и Эрнест Цермело. Фактически, Больцман сначала думал, что он сможет доказать, что для изолированной физической системы энтропия всегда и абсолютно не уменьшается, но не что просто очень маловероятно получить такое уменьшение энтропии. Но возражения, выдвинутые этими и другими физиками, постепенно привели Больцмана к статистическому и вероятностному подходу к этой теме, к тому, который используется и сегодня.