Будущее одной иллюзии. Перспективы пространства и времени

Многие исследователи, включая меня, считают, что довод Белла и эксперимент Аспекта убедительно устанавливают, что наблюдаемые корреляции между далеко разнесёнными частицами не могут быть объяснены рассуждениями в стиле Скалли — что корреляции закладываются каким-то обычным способом, во время, когда частицы были (ранее) вместе. Другие пытаются уклониться от ошеломляющего заключения о нелокальности, к которому это ведёт, или ослабить это заключение. Я не разделяю их скептицизм, но отдельные работы для широкого круга читателей, в которых обсуждаются некоторые из таких альтернатив, цитируются в примечании См., например: Gell-Mann M. The Quark and the Jaguar. New York: Freeman, 1994; Price H. Time’s Arrow and Archimedes’ Point. Oxford: Oxford University Press, 1996.

Специальная теория относительности запрещает всему, что когда-либо двигалось медленнее скорости света, пересекать барьер скорости света. Но, строго говоря, специальная теория относительности не запрещает чему-то всегда двигаться со скоростью, превышающей скорость света. Гипотетические частицы такого сорта называются тахионами . Большинство физиков считают, что тахионы не существуют, но другим нравится тешить себя возможностью их существования. Однако, по большей части из-за странных свойств, которые эти частицы имели бы согласно уравнениям специальной теории относительности, никто не нашёл для них полезного применения — даже гипотетически. В настоящее время теории, в которых появляются тахионы, обычно выглядят страдающими от нестабильности.

Склонный к математике читатель должен отметить: по сути, специальная теория относительности утверждает, что законы физики должны быть инвариантными относительно преобразований Лоренца, т. е. инвариантными относительно SO(3,1)-преобразования координат пространства Минковского. Следовательно, квантовая механика будет согласована со специальной теорией относительности, если её можно сформулировать так, что она будет инвариантна относительно преобразований Лоренца. В настоящее время релятивистская квантовая механика и релятивистская квантовая теория поля далеко продвинулись по направлению к этой цели, но пока ещё нет полного согласия в том, решается ли в них проблема квантового измерения инвариантным относительно преобразования Лоренца образом. Например, в релятивистской квантовой теории поля можно рассчитать амплитуды вероятности и вероятности исхода различных экспериментов полностью Лоренц-инвариантным способом. Но стандартная трактовка спотыкается на описании, каким же образом конкретный результат измерения возникает из всего спектра квантовых возможностей — т. е. что же происходит в процессе измерения. Это особенно важная проблема для запутывания как явления, которое зависит от того, что делает экспериментатор, — от акта измерения характеристик одной из запутанных частиц. Более детальное обсуждение можно найти в книге: Maudlin T. Quantum Non-locality and Relativity. Oxford: Blackwell, 2002.

Для склонного к математике читателя привожу соответствующий расчёт. Допустим, спин измеряется относительно трёх осей: вертикальной и двух, отклонённых от вертикали на угол 120° по и против часовой стрелки соответственно (полдень, четыре и восемь часов на циферблате часов соответственно). Пусть точно между двумя детекторами возникает пара электронов в так называемом синглетном состоянии. В этом состоянии суммарный спин двух электронов всегда равен нулю, так что если спин одного из электронов оказывается направленным вверх, то спин другого электрона обязательно будет направлен вниз. (Вспомните, что ради простоты я раньше рассматривал ситуацию, когда спины электронов всегда совпадают, а не противоположны. Но это совершенно не важно: вы можете представить, что детекторы откалиброваны противоположным образом, так что один из них всегда указывает на противоположное направление по отношению к тому, что есть на самом деле.) Элементарные рассуждения из квантовой механики показывают, что если угол между осями измерения спина на двух детекторах составляет θ , то вероятность того, что их показания окажутся противоположными, равна cos2(θ /2). Таким образом, если оси детекторов направлены одинаково (θ = 0), то их показания всегда противоположны (это отвечает утверждению основного текста книги, что показания всегда одинаковы — помните о перекалибровке одного из датчиков), а если угол между их осями составляет +120° или −120°, то вероятность регистрации ими противоположных спинов составляет cos2(±60°) = 1/4. Если же оси детекторов выбираются случайным образом и независимо друг от друга, то в 1/3 случаев их направления совпадут, а в 2/3 случаев — нет. Итого, ожидаемая вероятность обнаружения противоположных спинов равна (1/3) ∙ 1 + (2/3) ∙ (1/4) = 1/2, что и обнаруживается в эксперименте.

Перейти на страницу: 24 25 26 27 28 29 30 31 32 33 34

Copyright © 2010 - All Rights Reserved - www.physicinweb.ru