Вверх в небеса и вниз на землю. Эксперименты с пространством и временем

Такие миниатюрные чёрные дыры (порождаемые хоть космическими лучами, хоть в ускорителях частиц) не могут представлять никакой опасности ни для экспериментаторов, ни для мира в целом. После своего порождения они быстро бы разрушались, посылая характерный каскад других, более привычных частиц. В действительности микроскопические чёрные дыры столь короткоживущие, что экспериментаторы даже не будут пытаться непосредственно обнаруживать их; вместо этого они будут искать доказательства краткого существования чёрных дыр путём тщательного изучения каскада частиц, обрушивающегося на их детекторы. Самый чувствительный в мире детектор космических лучей — обсерватория имени Пьера Оже («Pierre Auger Observatory», с площадью наблюдения размером порядка Род Айленда, 4 тыс. кв. км) строится в настоящее время в обширной местности в западной Аргентине. По оценкам Шапира и Фенга, если все дополнительные измерения доходят до размера порядка 10−14 м, то после годичного сбора данных на детекторе Оже обнаружатся характерные следы от приблизительно дюжины миниатюрных чёрных дыр, рождавшихся в верхних слоях атмосферы. Если эти следы не обнаружатся, значит, дополнительные измерения меньше. Поиск следов чёрных дыр, рождаемых космическими лучами, является, несомненно, очень непростым делом, но в случае успеха появится первое экспериментальное подтверждение существования дополнительных измерений и микроскопических чёрных дыр, а также теоретических построений теории струн и квантовой гравитации.

Помимо рождения чёрных дыр существует и другой способ обнаружения дополнительных измерений, который будет задействован в следующем десятилетии с помощью ускорителей частиц. Идея этого способа представляет собой изощрённый вариант объяснения пропажи монет из вашего кармана, заваливающихся за подкладку пиджака.

Главным принципом физики является закон сохранения энергии. Энергия может проявляться во многих формах — в кинетической энергии мяча, летящего по бейсбольной площадке, в гравитационной потенциальной энергии, когда мяч набирает высоту, в звуковой и тепловой энергии, когда мяч ударяется о землю и возбуждает разнообразные колебательные движения, в энергии массы, заключённой в самом мяче, и т. д. — но при учёте всех составляющих энергии полная энергия всегда сохраняется. До сих пор ни в одном эксперименте не было обнаружено нарушения этого закона совершенного баланса энергии.

Но в зависимости от точного размера предполагаемых дополнительных измерений высокоэнергетические эксперименты, которые должны быть проведены с вновь усовершенствованным оборудованием в Фермилабе (лаборатория Fermilab — Fermi National Accelerator Laboratory) и на LHC, могут вскрыть процессы, которые на первый взгляд будут нарушать закон сохранения энергии: энергия после столкновения может оказаться меньше энергии до столкновения. Причина, напоминающая причину пропажи монет из кармана, состоит в том, что энергия (переносимая гравитонами) может ускользнуть в щель — микроскопическое дополнительное пространство, — возникающую из-за существования дополнительных измерений, и оказаться неучтённой при расчёте баланса энергии. Возможное обнаружение такого «сигнала пропажи энергии» даст ещё один способ установления того, что ткань космоса намного сложнее, чем мы можем видеть непосредственно.

Перейти на страницу: 3 4 5 6 7 8 9 10 11 12 13

Copyright © 2010 - All Rights Reserved - www.physicinweb.ru