Вверх в небеса и вниз на землю. Эксперименты с пространством и временем

Учёные, спроектировавшие и построившие лазерный интерферометр LIGO (Laser Interferometer Gravitational Wave Observatory — лазерный интерферометр гравитационно-волновой обсерватории), приняли этот вызов. (Этот проект был запущен совместно Калифорнийским технологическим институтом и Массачусетским технологическим институтом и финансировался Национальным фондом науки США). LIGO является впечатляющей установкой, а ожидаемая чувствительность поражает всяческое воображение. Она состоит из двух полых труб, каждая из которых составляет четыре километра в длину и чуть более метра в ширину; эти трубы расположены в виде гигантской буквы L. Для достижения огромной точности измерения относительной длины труб используется лазерный свет, одновременно посылаемый в вакуумные туннели внутри каждой трубы и отражаемый безупречно отшлифованными зеркалами на концах труб. Идея состоит в том, что если гравитационная волна пройдёт через установку, то она растянет одну трубу относительно другой, и если это растяжение будет достаточно большим, то учёные смогут обнаружить его.

Трубы сделаны столь длинными из-за того, что растяжение и сжатие, вызываемое гравитационной волной, пропорционально длине объекта. Если гравитационная волна растягивает четырёхметровый стержень, скажем, на 10−20 м, то она вытянет четырёхкилометровый стержень уже на 10−17 м, т. е. в тысячу раз больше. Поэтому чем длиннее объект, тем легче обнаружить изменение его длины. С целью усиления этого эффекта в экспериментах LIGO лазерные лучи совершают более сотни пробегов между зеркалами на противоположных концах каждой трубы, что увеличивает «эффективную длину» до 800 км. Благодаря таким уловкам и инженерному искусству установка LIGO сможет обнаружить изменение длины трубы, превосходящее триллионную долю толщины человеческого волоса или сто миллионную долю размера атома.

Но это ещё не всё: на самом деле есть две такие L-образные установки. Одна находится Ливингстоне (штат Луизиана), а другая примерно на расстоянии 3500 км от неё в Хэнфорде (штат Вашингтон). Если гравитационная волна от некоего удалённого астрофизического взрыва докатится до Земли, то она должна оказать одинаковое воздействие на каждый детектор, так что любая волна, пойманная в одной экспериментальной установке, должна обнаружиться и в другой. Это важная проверка на состоятельность, поскольку при всех принятых мерах предосторожности возмущения из повседневной жизни (громыхание проезжающего грузовика, скрежет бензопилы, сотрясение от упавшего дерева и т. д.) могут быть приняты за воздействие гравитационных волн. Требование соответствия показаний удалённых детекторов обеспечивает исключение таких ложных проявлений.

Исследователи также аккуратно рассчитали частоты гравитационных волн — количество пиков и впадин, которые должны проходить через детектор каждую секунду, — вызываемых рядом астрофизических явлений, включая взрывы сверхновых, вращательное движение несферических нейтронных звёзд и столкновения чёрных дыр. Без этой информации эксперименты уподобились бы поиску иголки в стоге сена; располагая этой информацией, учёные могут настроить свои детекторы на узкий диапазон частот, представляющий физический интерес. Любопытно, что расчёты показали: частоты некоторых гравитационных волн должны находиться в диапазоне нескольких тысяч колебаний в секунду; если бы это были звуковые волны, они попали бы в диапазон восприимчивости человеческого уха. Объединяющиеся нейтронные звёзды зазвучали бы как щебетание с быстро растущим тоном, а пара сталкивающихся чёрных дыр имитировала бы чириканье воробья, получившего резкий удар в грудь. Существует запутанная какофония гравитационных волн, прокатывающихся по ткани пространства-времени, и если всё пойдёт по плану, то установка LIGO будет первым инструментом, настроившимся на неё.

Перейти на страницу: 1 2 3 4 5 6 7 8 9 10

Copyright © 2010 - All Rights Reserved - www.physicinweb.ru