Вверх в небеса и вниз на землю. Эксперименты с пространством и временем

На самом деле эти данные могут ещё больше сузить поле предложений. Хотя квантовые флуктуации, растянутые инфляционным расширением, дают убедительное объяснение наблюдаемым температурным вариациям, но у инфляционной модели есть достойный соперник. Циклическая космологическая модель Стейнхардта и Тьюрока, описанная в главе 13, предлагает альтернативное объяснение. По мере того как две 3-браны циклической модели медленно направляются друг к другу, квантовые флуктуации вынуждают различные части бран приближаться с разной скоростью. Когда браны наконец-то сталкиваются приблизительно триллион лет спустя, то различные области бран соприкасаются немного в разные моменты времени, примерно как при соединении двух кусков шершавой наждачной бумаги. Крохотные отклонения от совершенно однородного соприкосновения порождают небольшие отклонения от совершенно однородной эволюции на каждой бране. Поскольку по предположению одна из этих бран является нашим трёхмерным пространством, то эти отклонения от однородности мы и должны обнаружить. Стейнхардт, Тьюрок и их сторонники заявили, что эти неоднородности порождают температурные отклонения той же формы, что и в инфляционной модели, и, следовательно, при сопоставлении с имеющимися сейчас данными циклическая модель даёт столь же жизнеспособное объяснение данным наблюдений.

Однако более точные данные, которые будут получены в следующее десятилетие, возможно, отсеют одну из соперничающих моделей. В инфляционной модели не только квантовые флуктуации растягиваются инфлатонным полем при экспоненциальном расширении, но в результате этого интенсивного растяжения генерируется также и мельчайшая квантовая рябь ткани пространства. Поскольку рябь пространства есть не что иное, как гравитационные волны (как в нашем недавнем обсуждении LIGO), то инфляционная модель предсказывает порождение гравитационных волн в самые ранние моменты Вселенной. Эти волны часто называют реликтовыми гравитационными волнами , чтобы отличать их от волн, которые были относительно недавно сгенерированы в результате крупных астрофизических событий. В циклической же модели, наоборот, отклонение от совершенной однородности происходит медленно, в течение почти безмерного промежутка времени, поскольку у бран уходит триллион лет на медленное приближение друг к другу для следующего столкновения. Отсутствие резкого и сильного изменения геометрии бран и геометрии пространства означает, что пространственная рябь не генерируется, так что в циклической модели реликтовые гравитационные волны отсутствуют. Таким образом, если реликтовые гравитационные волны будут обнаружены, то это обернётся ещё одним триумфом инфляционной модели и окончательно перечеркнёт циклическую теорию.

Вряд ли чувствительности LIGO хватит на то, чтобы обнаружить гравитационные волны, предсказанные инфляционной моделью, но, возможно, их существование будет косвенно подтверждено данными «Planck» или данными другого эксперимента, названного CMBPol (Cosmic Microwave Background Polarization — космический эксперимент для изучения поляризации реликтового излучения), — этот эксперимент сейчас планируется. «Planck» и, в особенности, CMBPol не будут сосредоточены исключительно на температурных вариациях реликтового излучения; они также будут измерять поляризацию — среднее направление спинов обнаруживаемых фотонов реликтового излучения. Путём сложных рассуждений, которые мы здесь пропускаем, можно показать, что гравитационные волны, порождённые Большим взрывом, должны оставить особый отпечаток на поляризации реликтового излучения, и, возможно, этот отпечаток достаточно силён, чтобы его можно было измерить.

Перейти на страницу: 7 8 9 10 11 12 13 14 15 16

Copyright © 2010 - All Rights Reserved - www.physicinweb.ru