Вверх в небеса и вниз на землю. Эксперименты с пространством и временем

Мы прошли долгий путь со времён Эмпедокла из Агридженто, объяснявшего Вселенную с помощью земли, воздуха, огня и воды. И бо́льшая часть достигнутого нами прогресса, со времён Ньютона и до революционных открытий XX в., впечатляюще подкреплялась экспериментальным подтверждением точных и детальных теоретических предсказаний. Но с середины 80-х гг. XX в. мы стали жертвами собственного успеха. В непрестанном стремлении ещё дальше продвинуть границы понимания наши теории достигли областей, недостижимых для современной технологии.

Тем не менее при должном усердии и удаче многие передовые идеи будут проверены в течение следующих десятилетий. Как мы увидим в данной главе, планируемые или проводимые сейчас эксперименты могут пролить свет на существование дополнительных измерений, на состав тёмной материи и тёмной энергии, на происхождение массы и на океан Хиггса, на космологию ранней Вселенной, на суперсимметрию и, возможно, на достоверность самой теории струн. И если нам чуть больше улыбнётся удача, то могут быть окончательно проверены некоторые многообещающие передовые идеи, касающиеся единой теории, природы пространства и времени и нашего космического начала.

Эйнштейновское увлечение

В течение десятилетий, направленных на создание общей теории относительности, Эйнштейн черпал своё вдохновение из множества источников. Самой влиятельной оказалась геометрия кривых поверхностей, разработанная в XIX в. рядом математических светил, включая Карла Фридриха Гаусса, Яноша Бояи, Николая Лобачевского и Георга Бернхарда Римана. Как мы говорили в главе 3, Эйнштейн также был вдохновлён идеями Эрнста Маха. Напомним, что Мах отстаивал реляционную концепцию пространства: в его представлении пространство служит языком для определения положения одного объекта по отношению к другому, но само оно не является независимой сущностью. Сначала Эйнштейн был твёрдым сторонником точки зрения Маха, поскольку она отражала крайнюю степень относительности, которая могла бы быть поддержана теорией относительности. Но со временем Эйнштейн осознал, что общая теория относительности не полностью включает в себя идеи Маха. Согласно общей теории относительности поверхность воды в ведре Ньютона, вращающемся в совершенно пустом пространстве, примет вогнутую форму, и это конфликтует с чисто реляционной точкой зрения, поскольку подразумевает концепцию абсолютного ускорения. Но всё же общая теория относительности действительно включает в себя некоторые элементы точки зрения Маха, и в ближайшие несколько лет планируется провести эксперимент, который разрабатывался в течение сорока лет и обойдётся в более чем 500 млн долларов. В этом эксперименте будет проверено одно из главных положений во взглядах Маха.

Ещё в 1918 г. австрийские физики Джозеф Ленс и Ханс Тирринг на основе общей теории относительности показали, что, подобно тому как массивные объекты искривляют пространство и время (подобно шару для игры в боулинг, положенному на батут), так и вращающиеся предметы увлекают за собой пространство (и время), подобно вращающемуся камню, погружённому в ведро с сиропом. Этот эффект, названный эффектом увлечения инерциальной системы отсчёта , означает, к примеру, что астероид, свободно падающий на быстро вращающуюся нейтронную звезду или чёрную дыру, будет захвачен в воронку вращающегося пространства и начнёт двигаться по скрученной траектории. Название эффекта связано с тем, что с точки зрения астероида (в системе отсчёта, связанной с астероидом) его вовсе ничего никуда не увлекает, а падает он прямо вниз по координатной сетке. Но поскольку пространство закручено (как на рис. 14.1), то и сетка загибается, из-за чего понятие «прямо вниз» с точки зрения астероида отличается от этого понятия с точки зрения отдалённого наблюдателя.

Перейти на страницу: 1 2 3 4 5 6

Copyright © 2010 - All Rights Reserved - www.physicinweb.ru