Вселенная на бране. Пространство и время с точки зрения M-теории

Браны большой размерности, p -браны, тоже не обязательно должны быть ничтожно малыми, а поскольку у них больше измерений, чем у струны, то открывается принципиально новая возможность. Когда мы представляем длинную — возможно, бесконечно длинную — струну, мы воображаем длинный одномерный объект, существующий в трёхмерном пространстве нашей повседневной жизни. Линия электропередачи, простирающаяся настолько, насколько может увидеть глаз, — адекватный образ. Аналогично, если мы воображаем большую — возможно, бесконечно протяжённую в обоих направлениях — 2-брану, мы воображаем двумерную поверхность, существующую в трёхмерном пространстве, хорошо известном нам по повседневному опыту. Я не знаю реалистической аналогии, но сверхъестественно огромный экран летнего кинотеатра — чрезвычайно тонкий, но широкий и высокий, насколько видит глаз, — даёт достаточно хороший визуальный образ. Но когда дело доходит до 3-браны, мы оказываемся в совершенно иной ситуации. У 3-браны три измерения, так что будь она большой — возможно, бесконечно протяжённой во всех трёх направлениях — она бы заполнила все три пространственных измерения. Тогда как 1-брана и 2-брана, подобно линии электропередачи и экрану кинотеатра, являются объектами, существующими внутри наших трёх пространственных измерений, 3-брана заняла бы всё известное нам пространство.

Отсюда возникает интригующая возможность. Не живём ли мы сами внутри 3-браны? Не уподобляемся ли мы Белоснежке, чей мир ограничивается двумерным экраном — 2-браной, которая сама пребывает внутри трёхмерной Вселенной (внутри трёх пространственных измерений кинотеатра)? Не может ли быть так, что всё известное нам существует внутри трёхмерного экрана — 3-браны, которая сама пребывает внутри Вселенной более высокой размерности, описываемой теорией струн / M-теорией? Не может ли оказаться так, что то, что Ньютон, Лейбниц, Мах и Эйнштейн называли трёхмерным пространством, является на самом деле особой трёхмерной сущностью теории струн / M-теории? Или, переходя на язык теории относительности, не может ли быть так, что четырёхмерное пространство-время, разработанное Минковским и Эйнштейном, является на самом деле следом или траекторией 3-браны, разворачивающейся во времени? Короче говоря, не может ли известная нам Вселенная быть браной?

Возможность того, то мы живём внутри 3-браны (так называемый сценарий мира на бране ), является самым последним поворотом теории струн / M-теории. Как мы увидим, она открывает совершенно новый взгляд на теорию струн / M-теорию с многочисленными и далеко идущими последствиями. Суть дела в том, что браны во многом подобны космической «липучке»; определённым образом, который мы сейчас обсудим, они очень липкие.

Липкие браны и колеблющиеся струны

Один из мотивов введения термина «M-теория» состоит в том, что, как мы теперь видим, название «теория струн» подчёркивает лишь один из множества объектов теории. Одномерные струны были обнаружены в теоретических исследованиях за десятилетия до того, как более тонкий анализ обнаружил существование бран более высокой размерности, так что «теория струн» — в чём-то устаревшее название. Однако, хотя M-теория и устанавливает своего рода «демократию» среди многообразия объектов различной размерности, но струны всё же играют главную роль в нашей современной формулировке. Одна из причин сразу же ясна. Можно игнорировать все p -браны более высокой размерности в ситуации, когда они гораздо тяжелее струн, — так исследователи неосознанно и поступали с 1970-х гг. Но есть и ещё одна причина, носящая более общий характер и делающая струны «первыми среди равных».

В 1995 г., вскоре после того как Виттен объявил о своём открытии, Джозеф Польчински из Калифорнийского университета в Санта-Барбаре получил богатую пищу для размышлений. Несколькими годами ранее в статье, написанной совместно с Робертом Леем и Джином Даем, Польчински обнародовал интересное и загадочное свойство теории струн. Мотивировки и рассуждения Польчински были несколько техническими, но детали для нас не важны, а результаты таковы. Он обнаружил, что в определённых ситуациях концы открытых струн (напомним, что такие струны представляют собой отрезки с двумя свободными концами) не могут двигаться как им угодно. Подобно тому как бусинка на проволочке может свободно двигаться, но при своём движении вынуждена повторять контур проволоки, и подобно тому как пинбольный шарик свободен в своём движении, но должен повторять контуры поверхности пинбольного стола, так и концы незамкнутой струны могут свободно двигаться, но ограничены в своём движении определёнными формами или контурами в пространстве. Польчински с соавторами показал, что хотя струна всё ещё вольна колебаться, но её концы будут «приклеены» к определённым областям или «захвачены» ими.

Перейти на страницу: 2 3 4 5 6 7 8 9 10 11 12

Copyright © 2010 - All Rights Reserved - www.physicinweb.ru