Мир на струне. Ткань Вселенной в теории струн

Вот что предлагала статья, полученная Эйнштейном в апреле 1919 г. Спрашивается, почему Эйнштейн её не выбросил? Мы не видим другое пространственное измерение — нам никогда не приходилось бесцельно плутать из-за того, что улица, номер дома и номер этажа почему-то недостаточны, чтобы определить адрес, — так почему же стоит рассматривать такую странную идею? А вот почему. Калуца обнаружил, что уравнения общей теории относительности Эйнштейна могут быть легко и красиво математически расширены на Вселенную, которая имеет на одно пространственное измерение больше. Калуца предпринял это расширение и обнаружил, что версия общей теории относительности с большим числом измерений не только включает исходные уравнения гравитации Эйнштейна, но вследствие дополнительного пространственного измерения также и дополнительные уравнения. Когда Калуца изучил эти дополнительные уравнения, он открыл нечто чрезвычайное: дополнительные уравнения были не чем иным, как уравнениями, которые в XIX в. открыл Максвелл для описания электромагнитного поля! Представив Вселенную с одним новым пространственным измерением, Калуца предложил решение проблемы, которую Эйнштейн рассматривал как одну из самых важных проблем всей физики. Калуца нашёл схему, которая объединила уравнения общей теории относительности Эйнштейна с уравнениями электромагнетизма Максвелла. Вот почему Эйнштейн не выбросил статью Калуцы.

Интуитивно, вы можете представить предложение Калуцы следующим образом. В общей теории относительности Эйнштейн заставил двигаться пространство и время. Эйнштейн понял, что искривление и растяжение пространства и времени есть геометрическое воплощение гравитационной силы. В статье Калуцы предполагалось, что геометрическое богатство пространства и времени ещё больше. В то время как Эйнштейн нашёл, что гравитационные поля могут быть описаны как деформации и рябь в трёх обычных пространственных и одном времённом измерении, Калуца обнаружил, что во Вселенной с дополнительным пространственным измерением могли бы быть дополнительные деформации и неровности. И эти деформации и неровности, как показал его анализ, могли бы в точности подойти для описания электромагнитного поля. В руках Калуцы геометрический подход к пониманию Вселенной самого Эйнштейна продемонстрировал достаточную силу, чтобы объединить гравитацию и электромагнетизм.

Конечно, проблема осталась. Хотя математика работала, но как не было, так и до сих пор нет свидетельств существования пространственного измерения за пределами трёх, о которых мы все знаем. Так что же, открытие Калуцы было всего лишь курьёзом, или оно имеет какое-то отношение к нашей Вселенной? Калуца очень доверял теории — он, например, учился плавать путём изучения учебника по плаванию и только лишь затем путём плавания в море, — но идея о невидимом пространственном измерении, независимо от того, насколько неотразима теория, всё же звучит слишком вызывающе. Затем в 1926 г. шведский физик Оскар Клейн добавил к идее Калуцы новый поворот, который может объяснить, где скрываются дополнительные измерения.

Скрытые измерения

Чтобы понять идею Клейна, представим Филиппа Пети, гуляющего по длинному покрытому резиной канату, туго растянутому между горами Эверест и Лхоцзе. Разглядываемый с расстояния многих километров, как на рис. 12.5, канат выглядит как одномерный объект вроде линии — объект, который имеет протяжённость только вдоль своей длины. Если мы узнаем, что вдоль каната навстречу Филиппу ползёт крохотный червячок, мы будем изо всех сил кричать Филиппу, чтобы он остановился, чтобы избежать беды. Конечно, после короткого размышления мы сообразим, что канат имеет дополнительную поверхность, кроме измерения влево/вправо, которое мы можем непосредственно воспринимать. Хотя её трудно различить невооружённым взглядом с большого расстояния, но поверхность каната имеет второе измерение: измерение по и против часовой стрелки, измерение, которое «закручено» вокруг каната. С помощью скромного телескопа это циклическое измерение становится видимым, и мы видим, что червяк может двигаться не только по длинному, развёрнутому измерению влево/вправо, но также и по короткому, «скрученному» направлению по/против часовой стрелки. Так что в каждой точке каната червяк имеет два независимых направления, по которым он может двигаться (это то, что мы имеем в виду, когда мы говорим, что поверхность каната двумерна), поэтому он может безопасно освободить дорогу Филиппу или уползая от него вперёд, или отползая вдоль маленького циклического измерения вбок и давая возможность Филиппу пройти мимо.

Перейти на страницу: 14 15 16 17 18 19 20 21 22 23 24

Copyright © 2010 - All Rights Reserved - www.physicinweb.ru