Мир на струне. Ткань Вселенной в теории струн

Стандартная модель не может пролить никакого света на этот вопрос, поскольку свойства частиц являются частью необходимых для этой теории входных данных. Теория не сдвинется с места и не начнёт давать результаты, пока не будут заданы свойства частиц. Но теория струн иная. В теории струн свойства частиц определяются способами вибрации струны, так что теория обещает дать объяснение свойствам частиц.

Свойства частиц в теории струн

Чтобы понять новую объяснительную схему теории струн, нам нужно лучше почувствовать, как вибрации струн производят свойства частиц, так что рассмотрим простейшее свойство частицы, её массу.

Из формулы E = mc 2 мы знаем, что масса и энергия взаимозаменяемы; как доллар и евро, они являются конвертируемыми валютами (но в отличие от денежных валют, они имеют фиксированный курс обмена, заданный скоростью света, умноженной на себя, c 2). Наше выживание зависит от уравнения Эйнштейна, поскольку солнечное тепло и свет, поддерживающие жизнь, генерируются путём конвертирования 4,3 млн т материи в энергию каждую секунду; однажды ядерные реакторы на Земле смогут, подражая Солнцу, безопасно заставить работать уравнение Эйнштейна, чтобы обеспечить человечество практически неограниченными запасами энергии.

В этих примерах энергия получается из массы. Но уравнение Эйнштейна прекрасно работает и в обратном направлении — в направлении, в котором масса получается из энергии, — и это то направление, в котором теория струн использует уравнение Эйнштейна. Масса частицы в теории струн есть не что иное, как энергия её вибрирующей струны. Например, объяснение, которое теория струн предлагает тому, почему одна частица тяжелее, чем другая, состоит в том, что струна, представляющая более тяжёлую частицу, колеблется быстрее и сильнее, чем струна, представляющая более лёгкую частицу. Более быстрые и сильные колебания означают более высокую энергию, а более высокая энергия транслируется через формулу Эйнштейна в бо́льшую массу. И наоборот, чем легче частица, тем медленнее и слабее соответствующая вибрация струны; безмассовая частица вроде фотона или гравитона соответствует струне, вибрирующей наиболее спокойным и мягким способом, каким только возможно.[243]

Другие свойства частицы, такие как её электрический заряд и спин, кодируются более тонкими свойствами колебаний струны. По сравнению с массой эти свойства труднее описать без использования математики, но они следуют той же самой основной идее: способ колебаний является отпечатком пальца частицы; все свойства, которые мы используем, чтобы отличать одну частицу от другой, определяются способом колебаний струны, соответствующей данной частице.

В начале 1970-х гг., когда физики анализировали способы вибраций, возникающие в первой инкарнации струнной теории — теории бозонных струн , — чтобы определить разновидности свойств частиц, которые может предсказывать теория, они налетели на подводный камень. Каждому способу вибрации в теории бозонных струн соответствовало целочисленное значение спина: 0, 1, 2 и т. д. Это было проблемой, поскольку, хотя частицы — переносчики взаимодействий имеют значения спина этого вида, частицы материи (вроде электронов и кварков) — нет. Они имеют дробное значение спина — 1/2. В 1971 г. Пьер Рамон из университета Флориды нашёл средство от этого недостатка — он нашёл способ так модифицировать уравнения теории бозонных струн, чтобы допустить также и способы колебаний с полуцелым спином.

Фактически, при ближайшем рассмотрении исследования Рамона, вместе с результатами Шварца и его коллеги Андре Невье и вместе с более поздними идеями Фердинандо Глиоцци, Джоэля Шерка и Дэвида Олива, открыли совершенный баланс — новую симметрию — между фигурами колебаний с различными спинами в модифицированной теории струн. Эти исследователи нашли, что новые способы вибраций возникают парами, в которых величина спина отличается на 1/2. Для каждого способа колебаний со спином 1/2 имеется ассоциированный способ колебаний со спином 0. Для каждого способа колебаний со спином 1 имеется ассоциированный способ колебаний со спином 1/2 и т. д. Связь между целыми и полуцелыми значениями спина назвали суперсимметрией , и вместе с этими результатами родилась суперсимметричная теория струн , или теория суперструн . Примерно десятью годами позже, когда Шварц и Грин показали, что все потенциальные аномалии, которые угрожали теории струн, уничтожили друг друга, они на самом деле работали в теории суперструн, так что революцию, вызванную их статьёй, правильнее называть первой суперструнной революцией. (В последующем мы часто будем ссылаться на струны и на теорию струн, но это только для краткости; мы всегда имеем в виду суперструны и теорию суперструн.)

Перейти на страницу: 10 11 12 13 14 15 16 17 18 19 20

Copyright © 2010 - All Rights Reserved - www.physicinweb.ru