Испарение вакуума. Теплота, ничто и объединение

В течение 95% истории Вселенной космический корреспондент, интересующийся общей, нарисованной широкими мазками формой Вселенной, сообщал бы одно и то же: Вселенная продолжает расширяться. Материя продолжает рассеиваться вследствие расширения. Плотность Вселенной продолжает уменьшаться. Температура продолжает падать. В самых больших масштабах Вселенная сохраняет симметричный однородный вид. Но не всегда можно было описывать космос так легко. Самые ранние этапы потребовали бы чрезвычайно интенсивного репортажа, поскольку в те начальные моменты времени Вселенная испытывала быстрые изменения. Теперь мы знаем — то, что происходило тогда, сыграло определяющую роль в том, что мы наблюдаем сегодня.

В этой главе мы сфокусируемся на критических моментах в первые доли секунды после Большого взрыва, когда, как мы думаем, количество симметрии, заключённой во Вселенной, неожиданно менялось, причём с каждым изменением начинались совершенно различные эпохи в космической истории. В то время как сейчас корреспондент может неспешно передавать несколько одинаковых строчек каждые несколько миллиардов лет, в те ранние моменты быстрых изменений симметрии его работа должна была быть значительно более напряжённой, поскольку основная структура материи и сил, отвечающих за её поведение, была совершенно необычной. Причина связана с взаимосвязью между теплотой и симметрией и требует полного переосмысления понятия пустого пространства и понятия «ничто». Как мы увидим, такое переосмысление не только существенно обогащает наше понимание Вселенной в первые моменты, но и подводит на шаг ближе к осуществлению мечты, которая восходит к Ньютону, Максвеллу и в особенности к Эйнштейну, — мечты обунификации . Также важно, что эти разработки знаменуют начало нового, самого современного этапа космологических исследований — инфляционной космологии , подхода, который даёт ответы на некоторые наиболее животрепещущие вопросы и наиболее трудные загадки, по поводу которых стандартная модель Большого взрыва молчит.

Теплота и симметрия

Когда предметы становятся очень горячими или очень холодными, они иногда изменяются. И иногда изменения столь вопиющие, что вы даже не можете распознать предмет, с которого начинали. Так как мы имеем очень высокую температуру Вселенной сразу после Большого взрыва и последовавшее вслед за ним быстрое падение температуры, по мере того как пространство расширялось и охлаждалось, поэтому понимание последствий изменения температуры играет ключевую роль в попытках разобраться с ранней историей Вселенной. Но начнём с более простого. Начнём со льда.

Если вы нагреваете очень холодный кусочек льда, ничего особенного поначалу не происходит. Хотя его температура растёт, его внешний вид остаётся почти неизменным. Но если вы доведёте его температуру до нуля градусов по Цельсию и продолжите подводить тепло, внезапно произойдёт нечто неожиданное. Твёрдый лёд начнёт таять и превратится в жидкую воду. Пусть привычность этой трансформации не лишит спектакль яркости. Без предшествующего опыта, относящегося к льду и воде, было бы трудно осознать тесную связь между ними. Одно является телом, твёрдым как камень, тогда как другое является вязкой жидкостью. Простые наблюдения не обнаруживают прямых признаков того, что их молекулярный состав, H2O, идентичен. Если бы вы никогда до сих пор не видели лёд или воду, и вам бы показали бочку одного и другого вещества, сначала вы бы, вероятно, подумали, что они никак не связаны. И когда каждое вещество пересекло бы границу в ноль градусов по Цельсию, вы стали бы свидетелем удивительной алхимии, как они превращаются друг в друга.

Перейти на страницу: 1 2 3 4 5 6

Copyright © 2010 - All Rights Reserved - www.physicinweb.ru