О снежинках и пространстве-времени. Симметрия и эволюция космоса

Чтобы проиллюстрировать это, вспомним одну из тех видеоигр, в которых кажется, что экран имеет края, но на самом деле их нет, поскольку реально вы не можете покинуть пределы экрана: если вы пытаетесь выйти за правый край, вы снова появляетесь на левом; если вы выходите за верхний край, то снова появляетесь на нижнем. Экран «зациклен» путём отождествления верхнего края с нижним, а левого с правым, и, таким образом, форма пространства плоская (неискривлённая), но имеет конечный размер и не имеет краёв. Математически эта форма называется двумерным тором, она проиллюстрирована на рис. 8.5а . Трёхмерный вариант этой формы — трёхмерный тор — обеспечивает другую возможную форму для ткани космоса. Вы можете представить себе эту форму как гигантский куб, который зациклен вдоль всех трёх направлений: когда вы проходите через потолок, вы снова появляетесь снизу, когда вы проходите через заднюю стенку куба, вы снова появляетесь из передней стенки, когда вы проходите через левую сторону, вы снова появляетесь из правой, как показано на рис. 8.5б . Такая форма — плоская (в том смысле, что не искривлённая, а не в том смысле, что подобна блину), трёхмерная, конечная по всем направлениям и не имеет краёв и границ.

Рис. 8.5. (а ) Экран видеоигры является плоским (в смысле «неискривлённым»)

Рис. 8.5.

(а ) Экран видеоигры является плоским (в смысле «неискривлённым») и имеет конечный размер, но не содержит краёв или границ, поскольку он «зациклен». Математически такая форма называется двумерным тором . (б ) Трёхмерная версия той же формы, называемая трёхмерным тором , также плоская (в смысле «неискривлённая»), имеет конечный объём и тоже не имеет краёв или границ, поскольку зациклена. Если вы проходите через одну сторону куба, вы входите через противоположную сторону

Помимо этих возможностей, остаётся ещё и другая форма, согласующаяся с объяснением открытия Хаббла с помощью симметричного расширяющегося пространства. Хотя это трудно изобразить в трёх измерениях, но, как и в примере сферического пространства, имеется хорошая двумерная модель: бесконечный вариант картофельного чипса «Принглс» . Эта форма, часто обозначаемая как седло , является некоей противоположностью сферы: в то время как сфера симметрично выпукла наружу, седловина симметрично вогнута в себя, как показано на рис. 8.6. Используя немного математической терминологии, скажем, что сфера имеет положительную кривизну (выпукла наружу), седловина имеет отрицательную кривизну (вогнута в себя), а плоское пространство — как бесконечное, так и конечное — не имеет кривизны (не выпукло и не имеет седловидной формы).

Рис. 8.6. Использование двумерных аналогий для полностью симметричных

Рис. 8.6.

Использование двумерных аналогий для полностью симметричных пространств, в которых вид из любой точки пространства такой же, как и из любой другой, с тремя различными типами кривизны. (а ) Положительная кривизна, соответствующая однородной выпуклости, как у сферы. (б ) Нулевая кривизна, которая отвечает полному отсутствию выпуклости, как на бесконечной плоскости или конечном экране видеоигры. (в ) Отрицательная кривизна, которая отвечает седловидной поверхности

Исследователи доказали, что этот список — однородно положительная, отрицательная или нулевая — исчерпывает возможные виды кривизны для пространства, которое соответствует требованию симметрии между всеми положениями и всеми направлениями. И это действительно потрясающе. Мы говорим о форме всей Вселенной — о чем-то, для чего имеется бесчисленное число возможностей. Однако, призвав великую силу симметрии, исследователи оказались в состоянии резко снизить число возможностей. Так что если вы позволите симметрии направлять ваш ответ, и ваш полуночный интервьюер даст вам несколько шансов для ответа, вы будете в состоянии принять его вызов.

И всё же вы можете спросить: почему мы пришли к нескольким возможным формам для ткани пространства? Мы обитаем в одной Вселенной, так почему мы не можем точно указать на единственную форму? Только перечисленные формы гарантируют, что каждый наблюдатель, независимо от того, где во Вселенной он находится, должен видеть в больших масштабах одинаковый космос. Но такое применение симметрии, хотя и сильно ограничивает отбор, не даёт возможности полностью решить задачу и дать единственный ответ. Для этого нам нужны уравнения общей теории относительности Эйнштейна.

Перейти на страницу: 7 8 9 10 11 12 13 14 15 16 17

Copyright © 2010 - All Rights Reserved - www.physicinweb.ru