О снежинках и пространстве-времени. Симметрия и эволюция космоса

Космология, симметрия и форма пространства

Если кто-нибудь разбудит вас среди ночи и потребует рассказать о форме Вселенной — общей форме пространства, — вы, вероятно, затруднитесь с ответом. Даже в полусонном состоянии вы вспомните, что Эйнштейн показал, что пространство должно быть чем-то вроде пластилина, так что, в принципе, оно может иметь практически любую форму. Каким же тогда может быть возможный ответ? Мы живём на маленькой планете, вращающейся вокруг средней звезды на окраине Галактики, которая всего лишь одна из сотен миллиардов, рассеянных по пространству, так как же вы можете надеяться знать хоть что-нибудь о форме всей Вселенной? Но, когда туман сна рассеется, вы понемногу осознаете, что сила симметрии ещё раз придёт на помощь.

Если вы примете во внимание широко распространённое среди учёных мнение, что после крупномасштабного усреднения все местоположения и все направления Вселенной симметричны (равноправны) друг относительно друга, то вы на правильном пути к ответу на вопрос. Причина в том, что почти все формы пространства не удовлетворяют этому требованию симметрии, поскольку одна часть или одна область такого пространства фундаментально отличается от другой. Груша сильно выпукла у черенка, но куда меньше с противоположной стороны; яйцо более плоское в середине, но закруглённое у своих концов. Эти формы, хотя и проявляют некоторую степень симметрии, не обладают полной симметрией. Исключив такие формы и ограничившись только теми, в которых каждая область и направление похожи на любые другие, вы сможете значительно сократить список вариантов.

Мы уже сталкивались с одной формой, которая отвечает всем требованиям. Сферическая форма воздушного шара была ключевым моментом в симметрии между монетками на его раздувающейся поверхности, и поэтому трёхмерная версия этой формы, так называемая 3-сфера , является одним из кандидатов на модель формы пространства. Но это не единственная форма, которая даёт полную симметрию. Продолжая работать с более лёгкими для визуализации двумерными моделями, представим бесконечно широкий и бесконечно длинный резиновый лист — абсолютно плоский — с равномерно распределёнными монетками, приклеенными к его поверхности. Если весь лист растягивается, то опять имеется полная пространственная симметрия и полное согласие с открытием Хаббла; каждый Линкольн на монетке видит, что каждый другой Линкольн удаляется со скоростью, пропорциональной расстоянию до него, как показано на рис. 8.4. Поэтому трёхмерная версия этой формы, подобная бесконечно протяжённому кубу из прозрачной резины с галактиками, равномерно разбросанными внутри, является другой возможной формой для пространства. (Если вы предпочитаете кулинарные аналогии, подумайте о бесконечно большом пироге с маком, который упоминался раньше, таком, который имеет форму куба, но продолжается бесконечно, при этом мак играет роль галактик. Когда пирог печётся, тесто поднимается, заставляя каждое маковое зерно удаляться от других). Эта форма называется плоским пространством, поскольку, в отличие от примера сферического пространства, она не имеет кривизны (понятие «плоский», которое используют математики и физики, отличается от разговорного понятия «подобный блину»).

Рис. 8.4. (а ) Вид от любой монетки на бесконечном плоском листе

Рис. 8.4.

(а ) Вид от любой монетки на бесконечном плоском листе такой же, как и вид от любой другой монетки. (б ) Чем дальше друг от друга расположены две монетки на (а ), тем быстрее будет увеличиваться расстояние между ними при растяжении плоскости

Одно замечательное обстоятельство, имеющее отношение как к сферическому пространству, так и к бесконечному плоскому пространству, заключается в том, что вы можете бесконечно идти по нему и никогда не достигнете края или границы. Это удобно, поскольку позволяет избежать каверзных вопросов: что находится за краем пространства? что произойдёт, если вы дойдёте до границы пространства? Если пространство не имеет краёв или границ, вопрос не имеет смысла. Но заметим, что эти две формы обеспечивают это привлекательное свойство пространства различными способами. Если вы идёте прямо вперёд в сферическом пространстве, вы обнаружите, подобно Магеллану, что рано или поздно вернётесь в стартовую точку, нигде не встретив край. Наоборот, если вы идёте прямо вперёд по бесконечному плоскому пространству, то обнаружите, что, подобно кролику Энерджайзеру, можете идти и идти и никогда не дойдёте до края, но и не вернётесь туда, откуда начали путешествие. Хотя это может показаться фундаментальным отличием между геометрией искривлённого и плоского пространства, имеется простая вариация плоского пространства, которое делает его поразительно похожим в этом отношении на сферу.

Перейти на страницу: 6 7 8 9 10 11 12 13 14 15 16

Copyright © 2010 - All Rights Reserved - www.physicinweb.ru