Время и кванты. Как царство квантов помогает понять суть времени

Идея такова. Когда уравнение Шрёдингера применяется в простой ситуации, такой как прохождение отдельного изолированного фотона через экран с двумя щелями, оно приводит к известной интерференционной картине. Но этот лабораторный пример имеет две весьма специфические особенности, которые не характерны для событий реального мира. Первая состоит в том, что вещи, с которым мы сталкиваемся в повседневной жизни, больше и сложнее, чем отдельный фотон. Вторая — в том, что вещи, с которыми мы сталкиваемся в повседневной жизни, не изолированы: они взаимодействуют с нами и с окружением. Книга, находящаяся сейчас в ваших руках, подвергается контакту с человеком и, вообще, постоянно бомбардируется фотонами и молекулами воздуха. Более того, поскольку сама книга состоит из многих молекул и атомов, эти постоянно дрожащие составляющие непрерывно сталкиваются друг с другом. То же самое справедливо для стрелок измерительных приборов, для котов, для человеческих мозгов и просто для всего, с чем вы сталкиваетесь в повседневной жизни. На астрофизических масштабах Земля, Луна, астероиды и другие планеты непрерывно бомбардируются фотонами Солнца. Даже частичка пыли, плавающая в темноте космического пространства, подвергается непрерывным толчкам низкоэнергетических микроволновых фотонов, которые начали путешествовать по пространству спустя небольшое время после Большого взрыва. Итак, чтобы понять, что квантовая механика говорит о событиях реального мира, — в противоположность рафинированным лабораторным экспериментам, — мы должны применить уравнение Шрёдингера к этим более сложным, более беспорядочным ситуациям.

По существу, это было то, на что обратил внимание Цей. Его работа и работы многих других, кто последовал за ним, открыли нечто действительно удивительное. Хотя фотоны и молекулы воздуха слишком малы, чтобы оказать существенное влияние на движение большого объекта, например книги или кота, но они в состоянии сделать кое-что другое. Они непрерывно «толкают» волновую функцию большого объекта или, говоря на языке физики, они возмущают её когерентность : они размывают упорядоченную последовательность гребней и впадин, следующих друг за другом. Это критично, поскольку упорядоченность волновой функции является центральным свойством для генерирования интерференционных эффектов (см. рис. 4.2). Подобно тому как добавление маркирующих приборов в эксперимент с двумя щелями размазывает результирующую волновую функцию и поэтому размывает интерференционные эффекты, постоянная бомбардировка объектов составными частями окружающей среды также препятствует возникновению интерференционных явлений. С другой стороны, раз квантовая интерференция более невозможна, вероятности, присущие квантовой механике, с любой практической точки зрения ведут себя подобно вероятностям, присущим подбрасываемой монете и вращающейся рулетке. Когда декогеренция, вызванная взаимодействием с окружающей средой, размывает волновую функцию, экзотическая природа квантовых вероятностей растворяется в более привычных вероятностях повседневной жизни. Это может означать решение загадки квантового измерения, которое, если действительно окажется решением, стало бы лучшим, на что мы можем надеяться. Я сначала опишу идею декогеренции в наиболее оптимистичном свете, а затем сделаю акцент на том, что ещё остаётся сделать.

Если волновая функция изолированного электрона показывает, что он имеет, скажем, 50% вероятности находиться здесь и 50% вероятности находиться там, мы должны интерпретировать эти вероятности, используя всю причудливость квантовой механики. Поскольку обе альтернативы могут проявить себя при смешивании и генерировать интерференционную картину, мы должны думать о них как о реальных в равной степени. Проще говоря, кажется, что электрон находится в обоих положениях. Что произойдёт, если мы измерим положение электрона неизолированными лабораторными инструментами обычного размера? Тогда в соответствии с неопределённостью местонахождения электрона стрелка инструмента имеет 50% вероятности указать на одно значение и 50% вероятности — на другое. Но вследствие декогеренции стрелка не будет находиться в призрачной смеси, указывая на обе величины; вследствие декогеренции мы можем интерпретировать эти вероятности в обычном, классическом, повседневном смысле. Как монета имеет 50%-й шанс упасть орлом и 50%-й шанс упасть решкой, но падает или орлом, или решкой, так и стрелка прибора имеет 50%-й шанс указать на одну величину и 50%-й шанс указать на другую величину, но она определённо укажет на одну или на другую.

Перейти на страницу: 18 19 20 21 22 23 24 25 26 27

Copyright © 2010 - All Rights Reserved - www.physicinweb.ru