Запутывание пространства. Что значит быть разделённым в квантовой Вселенной?
ЭПР не согласились с этим. Реальность, — настаивали они, — есть нечто большее, чем показания детекторов; реальность шире всей совокупности всех наблюдений в данный момент времени. Когда никто и ничто, совсем ничто, ни один прибор, ни одно устройство не «смотрит» на Луну, Луна тем не менее находится на своём месте. Они считали, что Луна всегда остаётся частью реальности.
В известном смысле это противостояние перекликается с дебатами между Ньютоном и Лейбницем по поводу реальности пространства. Может ли что-либо считаться реальным, если в действительности мы не можем ни прикоснуться к нему, ни увидеть его, ни каким-либо образом измерить его? В главе 2 рассказывалось, как ньютоновское ведро резко изменило характер споров о пространстве благодаря неожиданному наблюдению, что влияние пространства может быть обнаружено непосредственно, по искривлённой форме поверхности вращающейся воды. В 1964 г. одним ошеломляющим ударом, который один комментатор назвал «самым глубоким открытием в науке», ирландский физик Джон Белл перевёл в ту же плоскость дискуссию о квантовой реальности.
В следующих четырёх разделах мы тщательно и полно опишем открытие Белла, за исключением лишь некоторого количества технических деталей. Тем не менее, хотя наше рассуждение не бог весть какое изощрённое, оно включает в себя пару моментов, которые лучше описать сначала по отдельности, а затем связать воедино. Если в какой-то момент вы почувствуете, что с вас достаточно технических подробностей, смело перепрыгивайте на несколько страниц вперёд (в раздел «Нет дыма без огня»), где вы найдёте резюме и обсуждение выводов, вытекающих из открытия Белла.
Белл и спин
Джон Белл перевёл центральную идею статьи Эйнштейна–Подольского–Розена из разряда философских рассуждений в ранг вопросов, на которые можно ответить экспериментально. Неожиданно оказалось: всё, что требуется, — это рассмотреть ситуацию, где имеются не точно две характеристики (например, положение и скорость), которые квантовая механика запрещает определять одновременно. Белл показал, что если имеются три или более характеристики, которые одновременно подпадают под принцип неопределённости, — т. е., измеряя одну из них, вы неизбежно искажаете все остальные и уже не можете точно их определить, — тогда существует эксперимент, позволяющий определить, что такое реальность. Простейший пример такой ситуации включает так называемый спин частиц.
Начиная с 20-х гг. прошлого века физикам было известно, что спины частиц связаны, грубо говоря, с вращательным движением частиц, напоминающим вращение футбольного мяча, закрученного при ударе по воротам. Но в таком классическом образе теряется ряд существенных свойств этого квантово-механического явления, и для нас важнее всего два следующих момента. Первый заключается в том, что частицы (например, электроны и протоны) могут вращаться только по часовой стрелке или против часовой стрелки со всегда неизменной скоростью относительно любой выбранной оси; ось вращения частицы может менять направление, но скорость её вращения не может ни уменьшиться, ни увеличиться. Второй момент: квантовая неопределённость применительно к спину показывает, что точно так же, как невозможно одновременно определить положение и скорость частицы, так же невозможно одновременно определить спин частицы относительно более чем одной оси. Например, если футбольный мяч вращается относительно оси, ориентированной на северо-восток, то его спин распределён между северной и восточной осями — и в ходе соответствующего измерения можно определить, какая часть спина приходится на каждую из осей. Однако, измеряя спин электрона относительно произвольно выбранной оси, вы никогда не получите дробную величину. Это похоже на то, как если бы само измерение заставляло электрон собирать всё своё вращательное движение и направлять его вдоль выбранной оси по или против часовой стрелки. Более того, поскольку ваше измерение влияет на спин электрона, вы утрачиваете возможность определить, как перед измерением электрон вращался относительно горизонтальной или любой другой оси. Эти особенности квантово-механического спина трудно полностью обрисовать, и эта трудность отражает ограниченность классических представлений в попытке описать истинную природу квантового мира. Но математические расчёты, проведённые на основе квантовой теории, а также десятилетия экспериментов убеждают нас, что эти особенности квантового спина вне всяких сомнений.