Относительность и абсолют. Пространство-время — это абстракция Эйнштейна или физическая сущность?

У Эйнштейна была и другая, в чём-то более веская, причина обратить своё внимание на гравитацию. Он понимал, что специальная теория относительности, базирующаяся на утверждении, что никакой материальный объект и никакое возмущение не может двигаться со скоростью, превышающей скорость света, прямо конфликтует с ньютоновским универсальным законом гравитации — фундаментальным достижением, с помощью которого более двух столетий с фантастической точностью предсказывали движение Луны, планет, комет и всех прочих небесных тел. Невзирая на экспериментальные подтверждения закона Ньютона, Эйнштейн понимал, что, согласно Ньютону, гравитация мгновенно распространяется от точки к точке, от Солнца к Земле и т. д., т. е. гораздо быстрее света , а это прямо противоречит специальной теории относительности.

Для иллюстрации этого противоречия предположим, что у вас выдался действительно прескверный вечер (в вашем родном городе закрылся боулинг-клуб, все позабыли о вашем дне рождения, кто-то съел последний кусок сыра в холодильнике), так что вы захотели побыть наедине с собой, и потому решились на лодочную прогулку при Луне. Луна над головой, на море прилив (именно гравитация Луны притягивает воду, вызывая прилив), отражения лунного света пляшут на поверхности морских волн. Но затем, словно в продолжение вечерних кошмаров, враждебные инопланетяне хватают Луну и мгновенно перебрасывают её на другой конец галактики. Конечно, такое исчезновение Луны было бы очень странным, но если верен ньютоновский закон всемирного тяготения, то этот эпизод повлечёт за собой нечто ещё более странное. Закон Ньютона предсказывает, что вода начнёт спадать (вследствие исчезновения притяжения со стороны Луны) за полторы секунды до того , как вы увидите, что Луна исчезла с неба. Подобно спринтеру, допустившему фальстарт, вода начнёт спадать на полторы секунды раньше.

Причина здесь в том, что, согласно Ньютону, в тот самый момент, когда исчезает Луна, также мгновенно исчезает и её притяжение, так что приливные волны мгновенно начинают спадать. А поскольку на преодоление примерно 400 тыс. км между Луной и Землёй свету требуется примерно полторы секунды, то вы не сразу заметите, что Луна исчезла; в течение полутора секунд вы будете видеть, что волны вдруг начали спадать, тогда как Луна, как обычно, сияет на небосклоне. Таким образом, согласно Ньютону, гравитация может воздействовать на нас раньше света — гравитация может опережать свет — а это, как был уверен Эйнштейн, на самом деле это не так.

Поэтому примерно в 1907 г. Эйнштейном завладела идея сформулировать новую теорию гравитации, которая была бы по крайней мере столь же точной, как ньютоновская, но не конфликтовала со специальной теорией относительности. Эта проблема оказалась не чета всем остальным. Гигантский интеллект Эйнштейна наконец-то столкнулся с подобающей ему проблемой. Его тетради того периода теснятся от наполовину сформулированных идей, промахов, когда маленькие ошибки приводили к долгим блужданиям по иллюзорным путям, и восклицаний, что ему удалось решить проблему, за которыми вскоре вновь обнаруживалась ошибка. Наконец, в 1915 г. Эйнштейн нашёл выход. Хотя Эйнштейн и получал помощь в критических ситуациях (особенно от математика Марселя Гроссмана), создание им общей теории относительности ознаменовало редкое героическое усилие одного ума, пытающегося постичь Вселенную. Результатом этих усилий явилась ярчайшая жемчужина доквантовой физики.

Путь Эйнштейна к созданию общей теории относительности начался с основного вопроса, который Ньютон скромно опустил два столетия ранее. Как гравитация действует через огромное пространство? За счёт чего страшно далёкое Солнце влияет на движение Земли? Солнце не прикасается к Земле, так как же оно воздействует на Землю? Короче говоря, как работает гравитация? Хотя Ньютон и открыл уравнение, которое с высокой точностью описывает силу гравитации, он вполне осознавал, что оставил без ответа этот важный вопрос. В своих «Началах» Ньютон честно написал: «Я оставляю эту проблему на рассмотрение читателя». Как видно, есть аналогия между этой проблемой и той, которую Фарадей и Максвелл решили в начале XIX в., используя представление о магнитном поле, посредством которого магнит воздействует на объекты, не прикасаясь к ним. На основании этого можно предложить аналогичный ответ: гравитация передаёт воздействие посредством другого поля — гравитационного поля. И, вообще говоря, это правильное предположение. Но проще сказать, чем создать теорию, которая не конфликтовала бы со специальной теорией относительности.

Перейти на страницу: 10 11 12 13 14 15 16 17 18 19 20

Copyright © 2010 - All Rights Reserved - www.physicinweb.ru